scholarly journals Comments on “Practitioners’ viewpoints on citizen science in water management: a case study in Dutch regional water resource management” by Ellen Minkman et al.

2016 ◽  
Author(s):  
Anonymous
2014 ◽  
Vol 599-601 ◽  
pp. 1301-1304
Author(s):  
Wen Ming Zhang ◽  
Zheng Shen ◽  
Wen Jun Pan ◽  
Rong Hui Ye

This paper presents a prototype of GIS (Geographic Information System) and web-based decision support system (GWDSS) for regional water resource management and planning, which is a conjunctive application of GIS, Web and DSS technologies. The components involved and implementation of GWDSS are analyzed. The scenario analysis approach and embedded GIS functions are explained. Through the application of GWDSS in the case study region, GWDSS enables managers and decision makers to improve the regional strategic management and planning of water resources,and optimizes the use of water to satisfy the demands of competing stakeholders and protecting water resources.


Author(s):  
Angie Bukley ◽  
Olga Zhdanovich

This chapter summarizes the collective work of a team of students who participated in the 2004 International Space University Summer Session Program in Adelaide, Australia. The project is called STREAM, which stands for Space Technologies for the Research of Effective wAter Management. The work represented in this chapter was accomplished as part of the intensive space studies curriculum offered during the summer session. The team project focused on the importance of fresh water resource management and its impact on the surrounding communities. The team explored various space technologies and their current and future potential to enhance water resource management. A real world case study of Australia’s Murray-Darling Basin (MDB) was performed to provide the central focus of the project. Based on the results of the case study, the team then extrapolated their results to other regions of the globe that are experiencing challenges to their fresh water supply. A significant space technology recommendation developed by the STREAM project team was to improve the soil moisture measurement capabilities in the MDB. The primary goal of the STREAM project team is that the recommendations outlined in the extensive final report (STREAM Team, 2004) will receive full attention from policy makers concerned with the water issues surrounding the MDB.


Water ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 671
Author(s):  
Xiaoying Zhou ◽  
Feier Wang ◽  
Kuan Huang ◽  
Huichun Zhang ◽  
Jie Yu ◽  
...  

Predicting and allocating water resources have become important tasks in water resource management. System dynamics and optimal planning models are widely applied to solve individual problems, but are seldom combined in studies. In this work, we developed a framework involving a system dynamics-multiple objective optimization (SD-MOO) model, which integrated the functions of simulation, policy control, and water allocation, and applied it to a case study of water management in Jiaxing, China to demonstrate the modeling. The predicted results of the case study showed that water shortage would not occur at a high-inflow level during 2018–2035 but would appear at mid- and low-inflow levels in 2025 and 2022, respectively. After we made dynamic adjustments to water use efficiency, economic growth, population growth, and water resource utilization, the predicted water shortage rates decreased by approximately 69–70% at the mid- and low-inflow levels in 2025 and 2035 compared to the scenarios without any adjustment strategies. Water allocation schemes obtained from the “prediction + dynamic regulation + optimization” framework were competitive in terms of social, economic and environmental benefits and flexibly satisfied the water demands. The case study demonstrated that the SD-MOO model framework could be an effective tool in achieving sustainable water resource management.


2020 ◽  
Vol 200 ◽  
pp. 02019
Author(s):  
Nurul Ihsan Fawzi ◽  
Annisa Noyara Rahmasary ◽  
Ika Zahara Qurani

Sustainable utilization of peatland is required for balancing production and conservation efforts. On peatland, one of the main components to examine sustainability is understanding the carbon balance. This research was conducted in Pulau Burung, Riau, Indonesia, which has a long history of peatland utilization for agriculture. The sets of utilized data included historical data of water management on peatland represented by water table and subsidence rate, next to carbon density of peat soil. The results showed the function of integrated water resource management made the yearly average water table depth is 48 and 49 cm in 2018 and 2019, respectively. The range water table is between 31cm to 72 cm due to season variability and crop requirement. Consequently, the rate of annual subsidence is averaging at 1.7 cm with cumulative subsidence in 32 yr is 54.1 cm. Since the water never drained since the establishment, the subsidence rate of the first five years is averaging only at 3.3 cm yr–1. Low subsidence rates minimize annual carbon loss during the peatland utilization around (30 to 200) Mg CO2 ha–1 yr–1. In 32 yr, the water management in peatland utilization in Pulau Burung has prevented 2 000 Mg CO2 ha–1 to 4 925 Mg CO2 ha–1 loss compared to other cultivated areas in peatland. Further, this paper discusses the practice that resulted in low emission of coconut agriculture in Pulau Burung as one of sustainability dimensions, which support the other sustainability aspects, that is the thriving local livelihood.


Sign in / Sign up

Export Citation Format

Share Document