Review comment on “Marginal cost curves for water footprint reduction in irrigated agriculture: guiding a cost-effective reduction of crop water consumption to a benchmark or permit level”

2017 ◽  
Author(s):  
Anonymous
2017 ◽  
Vol 21 (7) ◽  
pp. 3507-3524 ◽  
Author(s):  
Abebe D. Chukalla ◽  
Maarten S. Krol ◽  
Arjen Y. Hoekstra

Abstract. Reducing the water footprint (WF) of the process of growing irrigated crops is an indispensable element in water management, particularly in water-scarce areas. To achieve this, information on marginal cost curves (MCCs) that rank management packages according to their cost-effectiveness to reduce the WF need to support the decision making. MCCs enable the estimation of the cost associated with a certain WF reduction target, e.g. towards a given WF permit (expressed in m3  ha−1 per season) or to a certain WF benchmark (expressed in m3  t−1 of crop). This paper aims to develop MCCs for WF reduction for a range of selected cases. AquaCrop, a soil-water-balance and crop-growth model, is used to estimate the effect of different management packages on evapotranspiration and crop yield and thus the WF of crop production. A management package is defined as a specific combination of management practices: irrigation technique (furrow, sprinkler, drip or subsurface drip); irrigation strategy (full or deficit irrigation); and mulching practice (no, organic or synthetic mulching). The annual average cost for each management package is estimated as the annualized capital cost plus the annual costs of maintenance and operations (i.e. costs of water, energy and labour). Different cases are considered, including three crops (maize, tomato and potato); four types of environment (humid in UK, sub-humid in Italy, semi-arid in Spain and arid in Israel); three hydrologic years (wet, normal and dry years) and three soil types (loam, silty clay loam and sandy loam). For each crop, alternative WF reduction pathways were developed, after which the most cost-effective pathway was selected to develop the MCC for WF reduction. When aiming at WF reduction one can best improve the irrigation strategy first, next the mulching practice and finally the irrigation technique. Moving from a full to deficit irrigation strategy is found to be a no-regret measure: it reduces the WF by reducing water consumption at negligible yield reduction while reducing the cost for irrigation water and the associated costs for energy and labour. Next, moving from no to organic mulching has a high cost-effectiveness, reducing the WF significantly at low cost. Finally, changing from sprinkler or furrow to drip or subsurface drip irrigation reduces the WF, but at a significant cost.


2017 ◽  
Author(s):  
Abebe D. Chukalla ◽  
Maarten S. Krol ◽  
Arjen Y. Hoekstra

Abstract. Reducing the water footprint (WF) of the process of growing irrigated crop is an indispensable element in water management, particularly in water-scarce areas. To achieve this, information on marginal cost curves (MCCs) that rank management packages according to their cost-effectiveness to reduce the WF need to support the decision making. MCCs enable the estimation of the cost associated with a certain WF reduction target, e.g. towards a given WF permit (expressed in m3 per hectare per season) or to a certain WF benchmark (expressed in m3 per tonne of crop). This paper aims to develop MCCs for WF reduction for a range of selected cases. The soil-water-balance and crop-growth model, AquaCrop, is used to estimate the effect on evapotranspiration and crop yield and thus WF of crop production due to different management packages. A management package is defined as specific combination of management practices: irrigation technique (furrow, sprinkler, drip or subsurface drip); irrigation strategy (full or deficit irrigation); and mulching practice (no, organic or synthetic mulching). The annual average cost for each management package is estimated as the annualised capital cost plus the annual costs of maintenance and operations (i.e. costs of water, energy, and labour). Different cases is considered, including: three crops (maize, tomato and potato); four types of environment; three hydrologic years (wet, normal and dry years) and three soil types (loam, silty clay loam and sandy loam). For each crop, alternative WF reduction pathways were developed, after which the most cost-effective pathway was selected to develop the MCC for WF reduction. When aiming at WF reduction one can best improve the irrigation strategy first, next the mulching practice and finally the irrigation technique. Moving from a full to deficit irrigation strategy is found to be a no-regret measure: it reduces the WF by reducing water consumption at negligible yield reduction, while reducing the cost for irrigation water and the associated costs for energy and labour. Next, moving from no to organic mulching has a high cost-effectiveness, reducing the WF significantly at low cost. Finally, changing from sprinkler or furrow to drip or sub-surface drip irrigation reduces the WF but at significant cost.


2019 ◽  
Vol 62 (4) ◽  
pp. 985-1002
Author(s):  
Narayanan Kannan ◽  
Sujoy B. Roy ◽  
John S. Rath ◽  
Carrie S. Munill ◽  
Robert A. Goldstein

Abstract. Water consumption for crop irrigation is the largest single use of water in the U.S. but is poorly quantified because of limitations in data and the inherent challenges in measuring water consumption. In this study, water consumption for irrigated agriculture was estimated across the U.S. to improve understanding of water budgets in different regions. Published data on cropping patterns and water application were used in conjunction with a national-scale analysis to estimate water application and crop water consumption using the SWAT (Soil and Water Assessment Tool) watershed model. Crop water consumption estimates were based on evapotranspiration, with supporting information on the diversity of crops, irrigated area, water quantity and source, and local weather conditions. Quantification of water consumption supports broader analyses of the food-energy-water nexus and allows evaluation of the efficiency of irrigation water use at different spatial scales. Focusing on 2005 data, it is estimated that 60% of water reported as withdrawn from various sources is applied to fields, indicating a potentially large and poorly understood conveyance loss that occurs in a small number of states. Of the field-applied irrigation water, roughly 65% is directly used by crops or is lost in the field, with large regional variations. This may be compared to consumption estimates in prior studies that ranged from 16% to 90%. Areas that dominate the national aggregate estimate of crop water consumption include California’s Central and Imperial Valleys, areas overlying the Ogallala Aquifer in the central U.S., the Lower Colorado Basin, and the eastern part of the Pacific Northwest Basin. Keywords: Crop water use, Irrigated agriculture, SWAT, Watershed model, Water withdrawal.


Energies ◽  
2018 ◽  
Vol 11 (5) ◽  
pp. 1254 ◽  
Author(s):  
Perica Ilak ◽  
Ivan Rajšl ◽  
Josip Đaković ◽  
Marko Delimar

Sign in / Sign up

Export Citation Format

Share Document