crop water consumption
Recently Published Documents


TOTAL DOCUMENTS

40
(FIVE YEARS 16)

H-INDEX

7
(FIVE YEARS 1)

Agronomy ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 213
Author(s):  
Guohua Zhang ◽  
Xinhu Li

Shallow groundwater is considered an important water resource to meet crop irrigation demands. However, limited information is available on the application of models to investigate the impact of irrigation schedules on shallow groundwater depth and estimate evaporation while considering the interaction between meteorological factors and the surface soil water content (SWC). Based on the Richards equation, we develop a model to simultaneously estimate crop water consumption of shallow groundwater and determine the optimal irrigation schedule in association with a shallow groundwater depth. A new soil evaporation function was established, and the control factors were calculated by using only the days after sowing. In this study, two irrigation scheduling methods were considered. In Method A, irrigation was managed based on the soil water content; in Method B, irrigation was based on the crop water demand. In comparison with Method B, Method A was more rational because it could use more groundwater, and the ratio of soil evaporation to total evapotranspiration was low. In this model, the interaction between meteorological factors and the SWC was considered to better reflect the real condition; therefore, the model provided a better way to estimate the crop water consumption.


Sensors ◽  
2021 ◽  
Vol 21 (21) ◽  
pp. 7203
Author(s):  
Manuel Soler-Méndez ◽  
Dolores Parras-Burgos ◽  
Adrián Cisterne-López ◽  
Estefanía Mas-Espinosa ◽  
Diego S. Intrigliolo ◽  
...  

The challenge today is to optimize agriculture water consumption and minimize leaching of pollutants in agro-ecosystems in order to ensure a sustainable agriculture. The use of different technologies and the adoption of different irrigation strategies can facilitate efficient fertigation management. In this respect, the determination of soil field capacity point is of utmost importance. The use of a portable weighing lysimeter allows an accurate quantification of crop water consumption and water leaching, as well as the detection of soil field capacity point. In this work, a novel algorithm is developed to obtain the soil field capacity point, in order to give autonomy and objectivity to efficient irrigation management using a portable weighing lysimeter. The development was tested in field grown horticultural crops and proved to be useful for optimizing irrigation management.


2021 ◽  
Vol 49 (2) ◽  
pp. 12309
Author(s):  
Mihai BERCA ◽  
Valentina-Ofelia ROBESCU ◽  
Roxana HOROIAS

Researches on winter wheat in the south part of Romanian Plain during the dry years 2019 and 2020 have been focused on the crop water consumption issue in excessive conditions of air and soil drought. The wheat crop water consumption in the research sites (Calarasi and Teleorman counties), for the entire vegetation period, autumn – spring – summer, is between 1000 and 1050 m3 of water for each ton of wheat produced. Only in the spring-summer period, the wheat extracts a quantity of about 5960 m3 ha-1, i.e. 851 m3 t-1. The useful water reserve is normally located at about 1500 m3/ha-1, at a soil depth of 0-150 cm. In the spring of 2020, it has been below 400 m3 ha-1, so that at the beginning of May the soil moisture had almost reached the wilting coefficient (WC). Wheat plants have been able to survive the thermal and water shock of late spring - early summer, due to enhanced thermal alternation between air and soil. For a period of about 34 days, this alternation brought the plants 1-1.5 mm water, i.e. approximately 442 m3 ha-1, which allowed the prolongation of the plant’s agony until the rains of the second half of May. Yields have been, depending on the variety, between 1500 and 3000 kg ha-1, in average, covering only 60% of the crop costs. Other measures to save water in the soil have also been proposed in the paper.


2021 ◽  
Author(s):  
fawen li ◽  
Wenhui Yan ◽  
Yong Zhao ◽  
Rengui Jiang

Abstract Because of the shortage of water resources, the phenomenon of groundwater over-extraction is widespread in many parts of the world, which has become a hot issue to be solved. The traditional idea of water resources management only considering blue water (stream flow) can't meet the demand of sustainable utilization of water resources. Blue water accounts for less than 40% of total rainfall, while green water (evapotranspiration) accounts for more than 60% of total rainfall. In the natural environment, vegetation growth mainly depends on green water, which is often neglected. Obviously, the traditional water resources management without considering green water has obvious deficiencies, which can't really reflect the regional water consumption situation in the water resources management. And only by limiting water consumption can achieve the real water saving. In addition, the mode of water resources development and utilization has changed from "supply according to demand" to "demand according to supply". In this background, for many regions with limited water resources, it is impossible to rely on excessive water intake for development, and sustainable development of regional can only be realized by truly controlling water demand. This paper chooses Shijin Irrigation District in the North China Plain as the research area, where agricultural water consumption is high and groundwater over-extraction is serious, and ecological environment is bad. In order to alleviate this situation, comprehensive regulation of water resources based ET is necessary. Therefore, this paper focuses on the concept of ET water resources management and includes green water into water resources assessment. Based on the principle of water balance, the target ET value of crops in the study area is calculated, and the ET value is taken as the target of water resources regulation. The actual water consumption is calculated by Penman-Monteith formula, and reduction of crop water consumption is obtained according to the difference between actual ET and target ET. The reduction in crop water consumption leads to a reduction in demand for water supply, which reduces groundwater extraction. The results of this study can provide necessary technical support for solving the problem of groundwater over-extraction and realizing real water saving.


Author(s):  
Norma Guadalupe Sifuentes-Morín ◽  
José Ernesto Frías-Ramírez ◽  
Alan Joel Servín-Prieto ◽  
José Alfredo Montemayor-Trejo

Reference evapotranspiration (ETo), is the most important parameter to estimate water consumption. Nowadays the FAO-56 Penman-Monteith method is the most used in the world to estimate Eto, and recommended as the standard method. The main limitation to use this method is the availability of the requiere weather data. There are step by step calculations to estimate ETo when there is a lack of climate data; with the purpose to estimate the crop water consumption in arid regions, it was evaluated the presicion and aplicability of three equations to estimate this parameter when there is limited climate data. Estimates of Eto were performed for five sites, New Mexico State University main campus and its research centers Leyendecker, Artesia and Fabian Garcia, in new Mexico, USA; as well as the Agriculture and Range Science School of the Juarez University of Durango State in Mexico. The estimates of ETo were done with all required wheater data and with lack of solar radiation and relative humidity data. The presicion of the equations was evaluated by using the relative error and the index of agreement, consiedring as reference the FAO-56 with full weather data.


2020 ◽  
pp. 1242-1251
Author(s):  
Alimonti Claudio ◽  
Baiocchi Valerio ◽  
Spadaro Carlo

UAV based photogrammetry and 3D mapping are gaining fast and wide applications around the world majorly due to the relatively low-cost advantage it offers in the acquisition of high resolution multispectral acquisitions, compared to Aerophotogrammetry and satellite acquisitions. This research seeks to demonstrate the applicability of UAV photogrammetry visible, multispectral and thermal in investigating some physiological indexes of plants, reflecting plant physiological traits. A maize field in Latina (Italy) was acquired using a Fly Novex drone and with different cameras for the various acquisitions and consequently for different flight heights. The obtained images were processed using different photogrammetric models and a variable number of Ground Control Points (GCPs) for the georeferencing and accuracy assessment as well. Subsequently, by combining hydrological simulation methods and the use of physical indicators of the state of water stress, a method is proposed for predicting crop water consumption. The study conducted on the agricultural land of test site has provided useful results in terms of water savings, with an estimated value of three quarters of the total cubic meters of water needed to bring the land to saturation.


Agronomy ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 935 ◽  
Author(s):  
Jiang Li ◽  
Xiyun Jiao ◽  
Hongzhe Jiang ◽  
Jian Song ◽  
Lina Chen

In arid regions, irrigation scheduling optimization is efficient in coping with the shortage of agricultural water resources. This paper developed a simulation–optimization model for irrigation scheduling optimization for the main crop in an arid oasis, aiming to maximize crop yield and minimize crop water consumption. The model integrated the soil water balance simulation model and the optimization model for crop irrigation scheduling. The simulation model was firstly calibrated and validated based on field experiment data for maize in 2012 and 2013, respectively. Then, considering the distribution of soil types and irrigation districts in the study area, the model was used to solve the optimal irrigation schedules for the scenarios of status quo and typical climate years. The results indicated that the model is applicable for reflecting the complexities of simulation–optimization for maize irrigation scheduling. The optimization results showed that the irrigation water-saving potential of the study area was between 97 mm and 240 mm, and the average annual optimal yield of maize was over 7.3 t/ha. The simulation–optimization model of irrigation schedule established in this paper can provide a technical means for the formulation of irrigation schedules to ensure yield optimization and water productivity or water saving.


Sign in / Sign up

Export Citation Format

Share Document