Hybrid Space-Time Model and Machine Learning for Forecasting Multivariate Spatio-Temporal Data

Author(s):  
Hendri Prabowo ◽  
Dedy Dwi Prastyo ◽  
Setiawan
2021 ◽  
Author(s):  
Álvaro Ossandón ◽  
Manuela I Brunner ◽  
Balaji Rajagopalan ◽  
William Kleiber

Abstract. Timely projections of seasonal streamflow extremes can be useful for the early implementation of annual flood risk adaptation strategies. However, predicting seasonal extremes is challenging particularly under non-stationary conditions and if extremes are connected in space. The goal of this study is to implement a space-time model for projection of seasonal streamflow extremes that considers the nonstationarity and spatio-temporal dependence of high flows. We develop a space-time model to project seasonal streamflow extremes for several lead times up to 2 months using a Bayesian Hierarchical Modelling (BHM) framework. This model is based on the assumption that streamflow extremes (3-day maxima) at a set of gauge locations are realizations of a Gaussian elliptical copula and generalized extreme value (GEV) margins with nonstationary parameters. These parameters are modeled as a linear function of suitable covariates from the previous season selected using the deviance information criterion (DIC). Finally, the copula is used to generate streamflow ensembles, which capture spatio-temporal variability and uncertainty. We apply this modelling framework to predict 3-day maximum flow in spring (May-June) at seven gauges in the Upper Colorado River Basin (UCRB) with 0 to 2 months lead time. In this basin, almost all extremes that cause severe flooding occur in spring as a result of snowmelt and precipitation. Therefore, we use regional mean snow water equivalent and temperature from the preceding winter season as well as indices of large-scale climate teleconnections – ENSO, AMO, and PDO – as potential covariates for 3-day maximum flow. Our model evaluation, which is based on the comparison of different model versions and the energy skill score, indicates that the model can capture the space-time variability of extreme flow well and that model skill increases with decreasing lead time. We also find that the use of climate variables slightly enhances skill relative to using only snow information. Median projections and their uncertainties are consistent with observations thanks to the representation of spatial dependencies through covariates in the margins and a Gaussian copula. This spatio-temporal modeling framework helps to plan seasonal adaptation and preparedness measures as predictions of extreme spring flows become available 2 months before actual flood occurrence.


2021 ◽  
Vol 58 (1) ◽  
pp. 42-67 ◽  
Author(s):  
Mads Stehr ◽  
Anders Rønn-Nielsen

AbstractWe consider a space-time random field on ${{\mathbb{R}^d} \times {\mathbb{R}}}$ given as an integral of a kernel function with respect to a Lévy basis with a convolution equivalent Lévy measure. The field obeys causality in time and is thereby not continuous along the time axis. For a large class of such random fields we study the tail behaviour of certain functionals of the field. It turns out that the tail is asymptotically equivalent to the right tail of the underlying Lévy measure. Particular examples are the asymptotic probability that there is a time point and a rotation of a spatial object with fixed radius, in which the field exceeds the level x, and that there is a time interval and a rotation of a spatial object with fixed radius, in which the average of the field exceeds the level x.


2016 ◽  
Vol 54 (11) ◽  
pp. 6659-6673 ◽  
Author(s):  
Zhihui Xin ◽  
Guisheng Liao ◽  
Zhiwei Yang ◽  
Yuhong Zhang ◽  
Hongxing Dang

2012 ◽  
Vol 246-247 ◽  
pp. 744-748
Author(s):  
Yue Lin Sun ◽  
Lei Bao ◽  
Yi Hang Peng

An effective analysis of the battlefield situation and spatio-temporal data model in a sea battlefield has great significance for the commander to perceive the battlefield situation and to make the right decisions. Based on the existing spatio-temporal data model, the present paper gives a comprehensive analysis of the characteristics of sea battlefield data, and chooses the object-oriented spatio-temporal data model to modify it; at the same time this paper introduces sea battlefield space-time algebra system to define various data types formally, which lays the foundation for the establishment of the sea battlefield spatio-temporal data model.


2018 ◽  
Vol 4 (1) ◽  
Author(s):  
Peter Riggs

The Gödel space-time model displays an intrinsic rotation of matter, which is responsible for some fascinating characteristics. It is a theoretical model of a possible, though not the actual, universe.


Author(s):  
Alexander Shamailovich Avshalumov

Since the creation of GR and subsequent works in cosmology, the question of the curvature of space in the Universe is considered one of the most important and debated to this day. This is evident, because the curvature of space depends whether the Universe expands, contracts or is static. These discussions allowed the author to propose a paradoxical idea: simultaneous existence in the Universe of three interconnected space-times (positive, negative and zero curvature) and on this basis, to develop a theory in which each space-time plays its own role and develops in a strict accordance with its sign of curvature. The three space-time model of the structure of the Universe, proposed by the author, allows to solve many fundamental problems of modern cosmology and theoretical physics and creates the basis for building a unified physical theory (including one that unites GR and quantum physics).


2003 ◽  
Vol 10 (1) ◽  
pp. 19-30
Author(s):  
Eui-Kyoo Lee ◽  
Myung-Sang Moon ◽  
Richard F. Gunst

2003 ◽  
Vol 12 (01) ◽  
pp. 129-143 ◽  
Author(s):  
SUBENOY CHAKRABORTY ◽  
ARABINDA GHOSH

We have investigated perfect fluid model in Brans–Dicke theory for Bianchi VI 0 space–time and have obtained exact analytical solutions considering barotropic equation of state. These solutions have been analyzed for different values of the parameters involved and some of them have shown a period of exponential expansion.


2020 ◽  
Vol 31 (8) ◽  
Author(s):  
C. Forlani ◽  
S. Bhatt ◽  
M. Cameletti ◽  
E. Krainski ◽  
M. Blangiardo

Sign in / Sign up

Export Citation Format

Share Document