scholarly journals A system dynamic model to quantify the impacts of water resources allocation on water-energy-food-society (WEFS) nexus

2021 ◽  
Author(s):  
Yujie Zeng ◽  
Dedi Liu ◽  
Shenglian Guo ◽  
Lihua Xiong ◽  
Pan Liu ◽  
...  

Abstract. Sustainable management of water-energy-food (WEF) nexus remains an urgent challenge, as interactions between WEF and community sensitivity and reservoir operation in water system are often neglected. This paper aims to provide a new approach for modeling WEF nexus by incorporating community sensitivity and reservoirs operation into the system. The co-evolution behaviors of the nexus across water, energy, food and society (WEFS) were simulated by the system dynamic model. The reservoirs operation was simulated to determine water supply for energy and food systems by the Interactive River-Aquifer Simulation water resources allocations model. Shortage rates for water, energy and food resulted from the simulations were used to qualify their impacts on WEFS nexus through environmental awareness (EA) in society system. Community sensitivity indicated by EA can adjust the co-evolution behaviors of WEFS nexus through feedback loops. The proposed approach was applied to the mid-lower reaches of Hanjiang river basin in China as a case study. Results show that EA accumulation is mainly from shortages of water and energy, and the available water and energy are the vital resources to sustain WEFS nexus. Feedback driven by EA effectively keeps the system from collapsing and contributes to the concordant development of WEFS nexus. Water resources allocation can remarkably ensure water supply through reservoirs operation, decreasing water shortage rate from 16.60 % to 7.53 %. The resource constraining the WEFS nexus is transferred from water to energy. This paper therefore contributes to the understanding of interactions across WEFS system and helps the efficiency improving of resources management.

Author(s):  
Dua'a B. Telfah ◽  
Riccardo Minciardi ◽  
Giorgio Roth

Abstract. Modelling and optimization techniques for water resources allocation are proposed to identify the economic value of the unsatisfied municipal water demand against demands emerging from other sectors. While this is always an important step in integrated water resource management perspective, it became crucial for water scarce Countries. In fact, since the competition for the resource is high, they are in crucial need to trade values which will help them in satisfying their policies and needs. In this framework, hydro-economic, social equity and environmental constraints need to be satisfied. In the present study, a hydro-economic decision model based on optimization schemes has been developed for water resources allocation, that enable the evaluation of the economic cost of a deficiency in fulfilling the municipal demand. Moreover, the model enables efficient water resources management, satisfying the demand and proposing additional water resources options. The formulated model is designed to maximize the demand satisfaction and minimize water production cost subject to system priorities, preferences and constraints. The demand priorities are defined based on the effect of demand dissatisfaction, while hydrogeological and physical characteristics of the resources are embedded as constraints in the optimization problem. The application to the City of Amman is presented. Amman is the Capital City of the Hashemite Kingdom of Jordan, a Country located in the south-eastern area of the Mediterranean, on the East Bank of the Jordan River. The main challenge for Jordan, that threat the development and prosperity of all sectors, is the extreme water scarcity. In fact, Jordan is classified as semi-arid to arid region with limited financial resources and unprecedented population growth. While the easy solution directly goes to the simple but expensive approach to cover the demand, case study results show that the proposed model plays a major role in providing directions to decision makers to orient their policies and strategies in order to achieve sustainability of scarce water resources, satisfaction of the minimum required demand as well as financial sustainability. In addition, results map out national needs and priorities that are crucial in understanding and controlling the complexity of Jordan's water sector, mainly for the city of Amman.


2013 ◽  
Vol 18 (9) ◽  
pp. 21-27
Author(s):  
Włodzimierz Wojas ◽  
Sylwester Tyszewski

Abstract In this paper the authors compare two mathematical approaches to the problem of determination of optimal water resources allocation. We compare standard static approach based on static network flow model in pure or generalized network with the dynamic approach based on MDGNFM model presented in [WOJAS 2008]. This comparison is done in the framework of three worked examples of water system. We discuss the following aspects: a possibility to guarantee in the model the availability of the water which is allocated to user in analysed time period; the influence of a choice of the length of time step on the final result, a possibility to consider different summary times in water allocation paths. Comparative analysis can recommend the dynamic approach as more appropriate in the case of water systems of high instability of water flows.


2019 ◽  
Vol 11 (7) ◽  
pp. 2044 ◽  
Author(s):  
Jing Tian ◽  
Dedi Liu ◽  
Shenglian Guo ◽  
Zhengke Pan ◽  
Xingjun Hong

Inter-basin water transfer project is an effective engineering countermeasure to alleviate the pressure of water supply in water-deficient areas and balance the uneven distribution of water resources. To assess the impacts of inter-basin water transfer projects on optimal water resources allocation, an integrated water resources management framework is proposed, and is applied to the middle and lower reaches of the Hanjiang River Basin in China. Firstly, future water demands are analyzed as inputs. Then, a multi-objective water resources allocation model is formulated mitigating the negative impacts of water transfer projects on downstream water quantity and quality by using the non-dominated sorting genetic algorithm-II (NSGA-II). Finally, the indicators of water supply reliability, vulnerability and resilience are evaluated under different scenarios of inter-basin water transfer projects. The results indicate that: (1) the reliability and resilience of the water donor system will be gradually reduced while the vulnerability will be increased with the expansion of water transfer projects and the increase of water demand, (2) water supply risk is likely to increase in all zones (because zones at the boundary cannot obtain sufficient water due to limitations of local inflow and reservoir operation, while the amount of water available in the zones along the mainstream river is directly decreased by the water transfer projects), (3) more water supply measures and compensation measures will need to be implemented in the water donor areas. The framework proposed in this study to evaluate the comprehensive impact of inter-basin water transfer projects is conducive to water resources management.


2021 ◽  
Vol 301 ◽  
pp. 126901
Author(s):  
Tsai-Chi Kuo ◽  
Ni-Ying Hsu ◽  
Reza Wattimena ◽  
I-Hsuan Hong ◽  
Chin-Jung Chao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document