Urban water resources allocation under the uncertainties of water supply and demand: a case study of Urumqi, China

2015 ◽  
Vol 74 (4) ◽  
pp. 3543-3557 ◽  
Author(s):  
B. Wang ◽  
W. Li ◽  
G. H. Huang ◽  
L. Liu ◽  
L. Ji ◽  
...  
Water Policy ◽  
2006 ◽  
Vol 8 (2) ◽  
pp. 97-110 ◽  
Author(s):  
Can Wang ◽  
Camilla Dunham Whitehead ◽  
Jining Chen ◽  
Xiaomin Liu ◽  
Junying Chu

Beijing is facing the considerable challenge of water shortage, as it is just able to meet current water demand in a year with average precipitation and a shortfall between water supply and demand is estimated to be around 1.8 billion[109] cubic meters (BCM) by 2010. Aiming to find the solution to such a severe challenge, this paper investigates Beijing's current and future water resources availability and water-use configurations, as well as past and current effort on both areas of water supply and demand. The analysis shows a continuously growing demand for water and an aggravating deficit of traditionally available water resources. The paper concludes that it is necessary to establish well-structured water-use data and employ more advanced forecasting methods if sound future decisions regarding water balance are expected to be made. In order to realize Beijing Municipality's full urban water conservation potential, it is suggested that a comprehensive and integrated long-term conservation program be implemented, which is technically feasible and economically justified, to conserve water consistently for many years.


2015 ◽  
Vol 81 (2) ◽  
pp. 1209-1228 ◽  
Author(s):  
Qian Zhang ◽  
Xiujuan Liang ◽  
Zhang Fang ◽  
Tao Jiang ◽  
Yubo Wang ◽  
...  

Water ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 1085 ◽  
Author(s):  
Boyang Sun ◽  
Xiaohua Yang

In order to comprehensively evaluate the water resources carrying capacity in Xiong’an New Area, a system dynamics (SD) model was established to evaluate the regional water resources carrying capacity, for which several scenarios were designed: the original development scenario, the accelerated industrialization scenario, the environmental governance scenario, and the optimization development scenario. The results show that, compared with the original development scenario, the water resources carrying capacity in Xiong’an New Area can be improved in other scenarios, but a water supply and demand gap will be generated due to the lack of groundwater overdraft and a water transfer project. In 2026, under the accelerated industrialization scenario, the population carrying capacity will be 2.652 million, and the water supply and demand gap will be 1.13 × 108 m3; under the environmental governance scenario, the population carrying capacity will be 2.36 million, and the water supply and demand gap will be 0.44 × 108 m3; under the optimal development scenario, the population carrying capacity will be 2.654 million, and since the supply of water resources will be greater than the demand, there will not be a gap between supply and demand, making it the most feasible scenario to effectively alleviate the tension between industry restructuring, environmental management, and water resources development and utilization. The findings of this study can provide reference and decision support for optimizing regional water resources allocation and enhancing water resources carrying capacity in Xiong’an New Area.


2015 ◽  
Vol 15 (4) ◽  
pp. 817-824 ◽  
Author(s):  
Jing Peng ◽  
Ximin Yuan ◽  
Lan Qi ◽  
Qiliang Li

Water resources supply and demand has become a serious problem. Water resources allocation is usually a multi-objective problem, and has been of concern for many researchers. In the north of China, the lack of water resources in the Huai River Basin has handicapped the development of the economy, especially badly in the low-flow period. So it is necessary to study water resources allocation in this area. In this paper, a multi-objective dynamic water resources allocation model has been developed. The developed model took the overall satisfaction of water users in a time interval as the objective function, applied an improved simplex method to solve the calculation, considered the overall users' satisfaction variation with time, and followed the principle that the variation of the system satisfaction within adjacent periods of time must be minimal. The established model was then applied to the Huai River, for the present situation (2010), short-term (2020) and long-term (2030) planning timeframes. From the calculation results, the overall satisfaction in late May and mid September in 2030 was 0.65 and 0.70. After using the model allocation optimization, the overall satisfaction was improved, increasing to 0.78 and 0.79, respectively, thus achieving the dynamic balance optimization of water resources allocation in time and space. This model can provide useful decision support in water resources allocation, when it is used to alleviate water shortages occurring in the low-flow period.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Shiqi Fang ◽  
Ping Guo ◽  
Mo Li ◽  
Liudong Zhang

Water allocation is an essential programming to support the sustainable development of Wuwei Basin, Gansu Province, China. To satisfy the demands of the decision makers (DMs) of each subarea and the total area, a bilevel multiobjective linear programming (BLMOLP) model is proposed. In the BLMOLP, DMs have a hierarchy of two levels—the upper level and the lower level DMs. In this paper, a fuzzy goal programming (FGP) approach is applied to solve the BLMOLP. Firstly, the upper level is solved and used as the tolerance for the lower level. Then the weights of each objective function in the lower level are evaluated. Finally, a satisfied optimization solution of the problem was calculated. The result suggests that the FGP is a simple and feasible approach to BLMOLP problems. The proposed method was applied to a case study for water resources allocation in Wuwei Basin. For four scenarios under consideration, the model can effectively balance the benefits among all regions and sections according to the priority of the upper level decision makers. The results indicate that comprehensive solutions have been obtained.


2018 ◽  
Vol 18 (7) ◽  
pp. 589-596 ◽  
Author(s):  
Sijung Choi ◽  
Seongkyu Kang ◽  
Dongryul Lee ◽  
JoongHoon Kim

Sign in / Sign up

Export Citation Format

Share Document