scholarly journals Estimating annual water storage variations in medium-scale (2000–10 000 km<sup>2</sup>) basins using microwave-based soil moisture retrievals

2017 ◽  
Vol 21 (3) ◽  
pp. 1849-1862 ◽  
Author(s):  
Wade T. Crow ◽  
Eunjin Han ◽  
Dongryeol Ryu ◽  
Christopher R. Hain ◽  
Martha C. Anderson

Abstract. Due to their shallow vertical support, remotely sensed surface soil moisture retrievals are commonly regarded as being of limited value for water budget applications requiring the characterization of temporal variations in total terrestrial water storage (dS ∕ dt). However, advances in our ability to estimate evapotranspiration remotely now allow for the direct evaluation of approaches for quantifying dS ∕ dt via water budget closure considerations. By applying an annual water budget analysis within a series of medium-scale (2000–10 000 km2) basins within the United States, we demonstrate that, despite their clear theoretical limitations, surface soil moisture retrievals derived from passive microwave remote sensing contain statistically significant information concerning dS ∕ dt. This suggests the possibility of using (relatively) higher-resolution microwave remote sensing products to enhance the spatial resolution of dS ∕ dt estimates acquired from gravity remote sensing.

2016 ◽  
Author(s):  
Wade T. Crow ◽  
Eunjin Han ◽  
Dongryeol Ryu ◽  
Christopher R. Hain ◽  
Martha C. Anderson

Abstract. Due to their shallow vertical support, remotely-sensed surface soil moisture retrievals are commonly regarded as being of limited value for water budget applications requiring the characterization of temporal variations in total terrestrial water storage (S). However, advances in our ability to estimate evapotranspiration remotely now allow for the direct evaluation of approaches for quantifying annual variations in S via water budget closure considerations. By applying an annual water budget analysis within a series of medium-scale (2,000–10,000 km2) basins within the United States, we demonstrate that, despite their clear theoretical limitations, surface soil moisture retrievals derived from passive microwave remote sensing contain significant information concerning relative inter-annual variations in S. This suggests the possibility of using (relatively) higher-resolution microwave remote sensing to enhance the spatial resolution of S estimates acquired from gravity remote sensing. However, challenging calibration issues regarding the relationship between S and surface soil moisture must be resolved before the approach can be used for absolute water budget closure.


2021 ◽  
Vol 13 (1) ◽  
pp. 1-31
Author(s):  
Yongzhe Chen ◽  
Xiaoming Feng ◽  
Bojie Fu

Abstract. Soil moisture is an important variable linking the atmosphere and terrestrial ecosystems. However, long-term satellite monitoring of surface soil moisture at the global scale needs improvement. In this study, we conducted data calibration and data fusion of 11 well-acknowledged microwave remote-sensing soil moisture products since 2003 through a neural network approach, with Soil Moisture Active Passive (SMAP) soil moisture data applied as the primary training target. The training efficiency was high (R2=0.95) due to the selection of nine quality impact factors of microwave soil moisture products and the complicated organizational structure of multiple neural networks (five rounds of iterative simulations, eight substeps, 67 independent neural networks, and more than 1 million localized subnetworks). Then, we developed the global remote-sensing-based surface soil moisture dataset (RSSSM) covering 2003–2018 at 0.1∘ resolution. The temporal resolution is approximately 10 d, meaning that three data records are obtained within a month, for days 1–10, 11–20, and from the 21st to the last day of that month. RSSSM is proven comparable to the in situ surface soil moisture measurements of the International Soil Moisture Network sites (overall R2 and RMSE values of 0.42 and 0.087 m3 m−3), while the overall R2 and RMSE values for the existing popular similar products are usually within the ranges of 0.31–0.41 and 0.095–0.142 m3 m−3), respectively. RSSSM generally presents advantages over other products in arid and relatively cold areas, which is probably because of the difficulty in simulating the impacts of thawing and transient precipitation on soil moisture, and during the growing seasons. Moreover, the persistent high quality during 2003–2018 as well as the complete spatial coverage ensure the applicability of RSSSM to studies on both the spatial and temporal patterns (e.g. long-term trend). RSSSM data suggest an increase in the global mean surface soil moisture. Moreover, without considering the deserts and rainforests, the surface soil moisture loss on consecutive rainless days is highest in summer over the low latitudes (30∘ S–30∘ N) but mostly in winter over the mid-latitudes (30–60∘ N, 30–60∘ S). Notably, the error propagation is well controlled with the extension of the simulation period to the past, indicating that the data fusion algorithm proposed here will be more meaningful in the future when more advanced microwave sensors become operational. RSSSM data can be accessed at https://doi.org/10.1594/PANGAEA.912597 (Chen, 2020).


Author(s):  
T. J. Jackson ◽  
E. T. Engman

The upper few centimeters of the soil are extremely important because they are the interface between soil science and land-atmosphere research and are also the region of the greatest amount of organic material and biological activity (Wei, 1995). Passive microwave remote sensing can provide a measurement of the surface soil moisture for a range of cover conditions within reasonable error bounds (Jackson and Schmugge, 1989). Since spatially distributed and multitemporal observations of surface soil moisture are rare, the use of these data in hydrology and other disciplines has not been fully explored or developed. The ability to observe soil moisture frequently over large regions could significantly improve our ability to predict runoff and to partition incoming radiant energy into latent and sensible heat fluxes at a variety of scales up to those used in global circulation models. Temporal observation of surface soil moisture may also provide the information needed to determine key soil parameters, such as saturated conductivity (Ahuja et al., 1993). These sensors provide a spatially integrated measurement that may aid in understanding the upscaling of essential soil parameters from point observations. Some specific issues in soil hydrology that could be addressed with remotely sensed observations as described above include (Wei, 1995): (1) criteria for soil mapping based on spatial and temporal variance structures of state variables, (2) identifying scales of observation, (3) determining soil physical properties within profiles based on surface observations, (4) quantifying correlation lengths of soil moisture in time and space relative to precipitation and evaporation, (5) examining the covariance structure between soil water properties and those associated with water and heat fluxes at the land-atmosphere boundary at various scales, and (6) determining if vertical and horizontal fluxes of energy and matter below the surface can be ascertained from surface soil moisture distributions. In this chapter, the basis of microwave remote sensing of soil moisture will be presented along with the advantages and disadvantages of different techniques. Currently available sensor systems will be described.


2007 ◽  
Vol 38 (1) ◽  
pp. 1-20 ◽  
Author(s):  
Wolfgang Wagner ◽  
Günter Blöschl ◽  
Paolo Pampaloni ◽  
Jean-Christophe Calvet ◽  
Bizzarro Bizzarri ◽  
...  

Microwave remote sensing of soil moisture has been an active area of research since the 1970s but has yet found little use in operational applications. Given recent advances in retrieval algorithms and the approval of a dedicated soil moisture satellite, it is time to re-assess the potential of various satellite systems to provide soil moisture information for hydrologic applications in an operational fashion. This paper reviews recent progress made with retrieving surface soil moisture from three types of microwave sensors – radiometers, Synthetic Aperture Radars (SARs), and scatterometers. The discussion focuses on the operational readiness of the different techniques, considering requirements that are typical for hydrological applications. It is concluded that operational coarse-resolution (25–50 km) soil moisture products can be expected within the next few years from radiometer and scatterometer systems, while scientific and technological breakthroughs are still needed for operational soil moisture retrieval at finer scales (&lt;1 km) from SAR. Also, further research on data assimilation methods is needed to make best use of the coarse-resolution surface soil moisture data provided by radiometer and scatterometer systems in a hydrologic context and to fully assess the value of these data for hydrological predictions.


2019 ◽  
Vol 12 (2) ◽  
pp. 85-97 ◽  
Author(s):  
Ke Zhang ◽  
Li-jun Chao ◽  
Qing-qing Wang ◽  
Ying-chun Huang ◽  
Rong-hua Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document