scholarly journals Quantifying the impacts of land cover change on hydrological responses in the Mahanadi river basin in India

2021 ◽  
Vol 25 (12) ◽  
pp. 6339-6357
Author(s):  
Shaini Naha ◽  
Miguel Angel Rico-Ramirez ◽  
Rafael Rosolem

Abstract. The objective of this study is to assess the impacts of land cover change on the hydrological responses of the Mahanadi river basin, a large river basin in India. Commonly, such assessments are accomplished by using distributed hydrological models in conjunction with different land use scenarios. However, these models, through their complex interactions among the model parameters to generate hydrological processes, can introduce significant uncertainties to the hydrological projections. Therefore, we seek to further understand the uncertainties associated with model parameterization in those simulated hydrological responses due to different land cover scenarios. We performed a sensitivity-guided model calibration of a physically semi-distributed model, the Variable Infiltration Capacity (VIC) model, within a Monte Carlo framework to generate behavioural models that can yield equally good or acceptable model performances for subcatchments of the Mahanadi river basin. These behavioural models are then used in conjunction with historical and future land cover scenarios from the recently released Land-Use Harmonization version 2 (LUH2) dataset to generate hydrological predictions and related uncertainties from behavioural model parameterization. The LUH2 dataset indicates a noticeable increase in the cropland (23.3 % cover) at the expense of forest (22.65 % cover) by the end of year 2100 compared to the baseline year, 2005. As a response, simulation results indicate a median percent increase in the extreme flows (defined as the 95th percentile or higher river flow magnitude) and mean annual flows in the range of 1.8 % to 11.3 % across the subcatchments. The direct conversion of forested areas to agriculture (of the order of 30 000 km2) reduces the leaf area index, which subsequently reduces the evapotranspiration (ET) and increases surface runoff. Further, the range of behavioural hydrological predictions indicated variation in the magnitudes of extreme flows simulated for the different land cover scenarios; for instance, uncertainty in scenario labelled “Far Future” ranges from 17 to 210 m3 s−1 across subcatchments. This study indicates that the recurrent flood events occurring in the Mahanadi river basin might be influenced by the changes in land use/land cover (LULC) at the catchment scale and suggests that model parameterization represents an uncertainty which should be accounted for in the land use change impact assessment.

2021 ◽  
Author(s):  
Shaini Naha ◽  
Miguel A. Rico-Ramirez ◽  
Rafael Rosolem

Abstract. The objective of this study is to assess the impacts of Land Use Land Cover change on the hydrological responses of the Mahanadi river basin, a large river basin in India. Commonly, such assessments are accomplished by using distributed hydrological models in conjunction with different land use scenarios. However, these models through their complex interactions among the model parameters to generate hydrological processes, can introduce significant uncertainties to the hydrological projections. Therefore, we seek to further understand the uncertainties associated with model parameterization in those simulated hydrological responses due to different land cover scenarios. We performed a sensitivity-guided model calibration of a physically semi-distributed model, the Variable Infiltration Capacity (VIC) within a Monte Carlo Framework to generate behavioural models for subcatchments of the Mahanadi river basin. These behavioural models are then used in conjunction with historical and future land cover scenarios from the recently released, Land use Harmonisation (LUH2) to generate hydrological predictions and related uncertainties from behavioural model parameterisation. The LUH2 dataset indicates a noticeable increase in the cropland (23.3 % cover) at the expense of forest (22.65 % cover) by the end of year 2100 compared to the baseline year, 2005. As a response, simulation results indicate a median percent increase in the extreme flows (defined as the 95th percentile or higher river flow magnitude) and mean annual flows in the range of 1.8 to 11.3 % across the subcatchments. The direct conversion of forested areas to agriculture (on the order of 30,000 km2) reduces the Leaf Area Index and which subsequently reduces the Evapotranspiration (ET) and increases surface runoff. Further, the range of behavioural hydrological predictions indicated variation in the magnitudes of extreme flows simulated for the different land cover scenarios, for instance uncertainty in far future scenario ranges from 17 to 210 cumecs across subcatchments. This study indicates that the recurrent flood events occurring in the Mahanadi river basin might be influenced by the changes in LULC at the catchment scale and suggests that model parameterisation represents an uncertainty, which should be accounted for in the land-use change impact assessment.


2020 ◽  
Author(s):  
Shaini Naha ◽  
Miguel A. Rico-Ramirez ◽  
Rafael Rosolem

Abstract. Several research studies have addressed the effects of future climate changes on the hydrological regime of Mahanadi river basin located in eastern part of India. However, studies investigating the effects of future land cover changes on hydrology are limited owing to the lack of availability of projected land cover scenarios. Our study investigates how the hydrology of Mahanadi river basin would respond to the current and future land cover scenarios under a large-scale hydrological modelling framework. Both historical and future land cover scenarios from the recently released, Land use Harmonisation (LUH2) project for CMIP6, indicates cropland and forest are the major land cover types in the basin with a noticeable increase in the cropland (23.3 %) at the expense of forest (22.65 %) by the end of year 2100 compared to the baseline year, 2005. A physically semi-distributed model, the Variable Infiltration Capacity has been set up and implemented over the Mahanadi river basin system for the time period 1990–2010. The uncertain model parameters were subjected to Sensitivity Analysis and calibrated within a Monte Carlo framework. The best set of calibrated models obtained is used in conjunction with the harmonized set of present and future land use scenarios from LUH2 at 25 km by 25 km resolution to generate an ensemble of model simulations that captures a range of plausible impacts of land cover changes on discharge and other hydrological components of the basin. Overall, model simulation results indicate an increase in the extreme flows (i.e., 95th percentile or higher) in the range of 0.12 to 21 % at multiple subcatchments within the basin. This increase can be attributed to the direct conversion of forested areas to agriculture (on the order of 30,000 km2) that has reduced the Leaf Area Index and subsequently reduces the Evapotranspiration (ET). These changes ultimately affect other water balance components at the land surface, resulting in an increase in surface runoff and baseflow, respectively.


2019 ◽  
Vol 10 (3) ◽  
pp. 212-235
Author(s):  
Fabiana da Silva Pereira ◽  
Ima Célia Guimarães Vieira

The objective of this paper was to evaluate the degree of anthropic transformation of a river basin in the Amazon region. We used the digital data of the TerraClass Project to calculate the Anthropic Transformation Index - ATI. In order to verify spatial and temporal changes along a decade in the Gurupi river basin, we used the database of the years 2004 and 2014. The results showed an increase of anthropic changes in the basin over a decade, as a result of forest cover conversion into agricultural and pastures areas. Although the Gurupi river basin remains at a regular level of degradation after a decade, the intensification of land use and land cover change is a threat to the few rainforest remnants of the river basin, which can lead the region to the next level of degradation, if effective forest protection, conservation and restoration actions are not implemented in the region.  


2014 ◽  
Vol 34 (3) ◽  
pp. 209-231 ◽  
Author(s):  
Robel Ogbaghebriel Berakhi ◽  
Tonny J. Oyana ◽  
Samuel Adu-Prah

Sign in / Sign up

Export Citation Format

Share Document