scholarly journals A comparison of three simple approaches to identify critical areas for runoff and dissolved reactive phosphorus losses

2013 ◽  
Vol 10 (11) ◽  
pp. 14495-14534
Author(s):  
C. Hahn ◽  
V. Prasuhn ◽  
C. Stamm ◽  
D. G. Milledge ◽  
R. Schulin

Abstract. Diffuse phosphorus (P) losses are the main cause for eutrophication of surface waters in many regions. Implementing mitigation measures on critical source areas (CSA) is seen to be the most effective way to reduce P-losses. Thus, tools are needed that delineate CSA on the basis of available data. We compared three models based on different approaches and sets of input data: the Rainfall Runoff Phosphorus (RRP) model, the Dominant Runoff Processes (DoRP) model, and the Sensitive Catchment Integrated Modeling Analysis Platform (SCIMAP). The RRP model is a parsimonious dynamic model using the topographic index and a binary soil classification to simulate discharge and P-losses. The DoRP model distinguishes 8 soil classes based on soil and geological maps. It does not account for topography when calculating runoff. SCIMAP assesses runoff risks solely on the basis of topography using the network index. Compared to surface runoff and soil moisture data available from a catchment in Switzerland, the RRP model and SCIMAP made better predictions than the DoRP model, suggesting that in our study area topography was more important for CSA delineation than soil data. The study demonstrates that simple models using readily available data provide very useful information for CSA delineation.

2014 ◽  
Vol 18 (8) ◽  
pp. 2975-2991 ◽  
Author(s):  
C. Hahn ◽  
V. Prasuhn ◽  
C. Stamm ◽  
D. G. Milledge ◽  
R. Schulin

Abstract. Diffuse phosphorus (P) losses are the main cause for eutrophication of surface waters in many regions. Implementing mitigation measures on critical source areas (CSAs) is seen to be the most effective way to reduce P losses. Thus, tools are needed that delineate CSAs on the basis of available data. We compared three models based on different approaches and sets of input data: the rainfall-runoff-phosphorus (RRP) model, the dominant runoff processes (DoRP) model, and the Sensitive Catchment Integrated Modeling Analysis Platform (SCIMAP). The RRP model is a parsimonious dynamic model using the topographic index and a binary soil classification to simulate discharge and P losses. The DoRP model distinguishes eight soil classes based on soil and geological maps. It does not account for topography when calculating runoff. SCIMAP assesses runoff risks solely on the basis of topography using the network index. Compared to surface runoff and soil moisture data available from a catchment in Switzerland, the RRP model and SCIMAP made better predictions than the DoRP model, suggesting that in our study area topography was more important for CSA delineation than soil data. Based on the results, we suggest improvements of SCIMAP to enable average risk predictions and the comparison of risk predictions between catchments.


2013 ◽  
Vol 17 (10) ◽  
pp. 3679-3693 ◽  
Author(s):  
C. Hahn ◽  
V. Prasuhn ◽  
C. Stamm ◽  
P. Lazzarotto ◽  
M. W. H. Evangelou ◽  
...  

Abstract. Eutrophication of surface waters due to diffuse phosphorus (P) losses continues to be a severe water quality problem worldwide, causing the loss of ecosystem functions of the respective water bodies. Phosphorus in runoff often originates from a small fraction of a catchment only. Targeting mitigation measures to these critical source areas (CSAs) is expected to be most efficient and cost-effective, but requires suitable tools. Here we investigated the capability of the parsimonious Rainfall-Runoff-Phosphorus (RRP) model to identify CSAs in grassland-dominated catchments based on readily available soil and topographic data. After simultaneous calibration on runoff data from four small hilly catchments on the Swiss Plateau, the model was validated on a different catchment in the same region without further calibration. The RRP model adequately simulated the discharge and dissolved reactive P (DRP) export from the validation catchment. Sensitivity analysis showed that the model predictions were robust with respect to the classification of soils into "poorly drained" and "well drained", based on the available soil map. Comparing spatial hydrological model predictions with field data from the validation catchment provided further evidence that the assumptions underlying the model are valid and that the model adequately accounts for the dominant P export processes in the target region. Thus, the parsimonious RRP model is a valuable tool that can be used to determine CSAs. Despite the considerable predictive uncertainty regarding the spatial extent of CSAs, the RRP can provide guidance for the implementation of mitigation measures. The model helps to identify those parts of a catchment where high DRP losses are expected or can be excluded with high confidence. Legacy P was predicted to be the dominant source for DRP losses and thus, in combination with hydrologic active areas, a high risk for water quality.


2013 ◽  
Vol 10 (1) ◽  
pp. 1465-1510
Author(s):  
C. Hahn ◽  
V. Prasuhn ◽  
C. Stamm ◽  
P. Lazzarotto ◽  
M. W. H. Evangelou ◽  
...  

Abstract. Eutrophication of surface waters due to diffuse phosphorus (P) losses continues to be a severe water quality problem world-wide, causing the loss of ecosystem functions of the respective water bodies. Phosphorus in runoff often originates from a small fraction of a catchment only. Targeting mitigation measures to these critical source areas (CSA) is expected to be most efficient and cost-effective, but requires suitable tools. Here we investigated the capability of the parsimonious Rainfall-Runoff-Phosphorus (RRP) model to identify CSA in grassland-dominated catchments based on readily available soil and topographic data. After simultaneous calibration on runoff data from four small hilly catchments on the Swiss Plateau, the model was validated on a different catchment in the same region without further calibration. The RRP model adequately simulated the discharge and dissolved reactive P (DRP) export from the validation catchment. Sensitivity analysis showed that the model predictions were robust with respect to the classification of soils into "poorly drained" and "well drained", based on the available soil map. Comparing spatial hydrological model predictions with field data from the validation catchment provided further evidence that the assumptions underlying the model are valid and that the model adequately accounts for the dominant P export processes in the target region. Thus, the parsimonious RRP model is a valuable tool that can be used to determine CSA. Despite the considerable predictive uncertainty regarding the spatial extent of CSAs the RRP can provide guidance for the implementation of mitigation measures. The model helps to identify those parts of a catchment where high DRP losses are expected or can be excluded with high confidence. Legacy P was predicted to be the dominant source for DRP losses and thus, in combination with hydrologic active areas, a high risk for water quality.


2014 ◽  
Vol 05 (08) ◽  
pp. 694-702
Author(s):  
Jian Wang ◽  
Jingtian Zhang ◽  
Qiong Xie ◽  
Fengyu Zan ◽  
Shengpeng Zuo ◽  
...  

2017 ◽  
Vol 35 (3) ◽  
pp. 117-127
Author(s):  
Daniel E. Wells ◽  
Jeffrey S. Beasley ◽  
Edward W. Bush ◽  
Lewis. A. Gaston

Abstract Poultry litter ash (PLA) is a byproduct of bioenergy production and an effective P source for horticultural crops since it reduces P losses from container production due to its low P solubility. Experiments were conducted to determine effects of rate and placement of PLA on P loss from greenhouse crop production and growth and quality of two commonly-grown greenhouse crops, Verbena canadensis Britton ‘Homestead Purple' and Lantana camara L. ‘New Gold', by comparing two rates (140 and 280 g·m−3 P or 0.4 and 0.8 lb·yd−3) and two application methods (post-plant topdressed and pre-plant incorporated). Leachate-dissolved reactive phosphorus (DRP) concentrations were reduced by an average of 24% as P rate was reduced from 280 to 140 g·m−3, but were 134% less on average when PLA was topdressed instead of incorporated. Foliar P concentrations were less 33% and 44% for verbena and lantana, respectively when plants were topdressed compared to incorporated. Shoot biomass of verbena and lantana was 9% and 24% greater, respectively, when incorporating instead of topdressing PLA. As a P source, PLA should be pre-plant incorporated within the substrate at a total P rate between 140 g·m−3 (0.4 lb·yd−3) and 280 g·m−3 (0.8 lb·yd−3). Index words: phosphorus, poultry litter ash, Verbena canadensis Britton ‘Homestead Purple', Lantana camara L. ‘New Gold', dissolved reactive phosphorus. Species used in this study: ‘Homestead Purple' verbena (Verbena canadensis Britton); ‘New Gold' lantana (Lantana camara L.).


Water ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2412
Author(s):  
Brian Kronvang ◽  
Frank Wendland ◽  
Karel Kovar ◽  
Dico Fraters

The interaction between land use and water quality is of great importance worldwide as agriculture has been proven to exert a huge pressure on the quality of groundwater and surface waters due to excess losses of nutrients (nitrogen and phosphorous) through leaching and erosion processes. These losses result in, inter alia, high nitrate concentrations in groundwater and eutrophication of rivers, lakes and coastal waters. Combatting especially non-point losses of nutrients has been a hot topic for river basin managers worldwide, and new important mitigation measures to reduce the input of nutrients into groundwater and surface waters at the pollution source have been developed and implemented in many countries. This Special Issue of the Land use and Water Quality conference series (LuWQ) includes a total of 11 papers covering topics such as: (i) nitrogen surplus; (ii) protection of groundwater from pollution; (iii) nutrient sources of pollution and dynamics in catchments and (iv) new technologies for monitoring, mapping and analysing water quality.


2007 ◽  
Vol 36 (3) ◽  
pp. 730-741 ◽  
Author(s):  
Callie A. Volf ◽  
Gerald R. Ontkean ◽  
D. Rodney Bennett ◽  
David S. Chanasyk ◽  
Jim J. Miller

Water ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 328 ◽  
Author(s):  
Laura B. Klaiber ◽  
Stephen R. Kramer ◽  
Eric O. Young

Quantifying the influence of tile drainage on phosphorus (P) transport risk is important where eutrophication is a concern. The objective of this study was to compare P exports from tile-drained (TD) and undrained (UD) edge-of-field plots in northern New York. Four plots (46 by 23 m) were established with tile drainage and surface runoff collection during 2012–2013. Grass sod was terminated in fall 2013 and corn (Zea mays L.) for silage was grown in 2014 and 2015. Runoff, total phosphorus (TP), soluble reactive phosphorus (SRP), and total suspended solids (TSS) exports were measured from April 2014 through June 2015. Mean total runoff was 396% greater for TD, however, surface runoff for TD was reduced by 84% compared to UD. There was no difference in mean cumulative TP export, while SRP and TSS exports were 55% and 158% greater for UD, respectively. A three day rain/snowmelt event resulted in 61% and 84% of cumulative SRP exports for TD and UD, respectively, with over 100% greater TP, SRP and TSS exports for UD. Results indicate that tile drainage substantially reduced surface runoff, TSS and SRP exports while having no impact on TP exports, suggesting tile drains may not increase the overall P export risk.


Sign in / Sign up

Export Citation Format

Share Document