scholarly journals Reviving the Ganges Water Machine: why?

2015 ◽  
Vol 12 (9) ◽  
pp. 8727-8759 ◽  
Author(s):  
U. A. Amarasinghe ◽  
L. Mutuwatte ◽  
L. Surinaidu ◽  
S. Anand ◽  
S. K. Jain

Abstract. The Ganges River Basin may have a major pending water crisis. Although the basin has abundant surface water and groundwater resources, the seasonal monsoon causes a mismatch between supply and demand as well as flooding. Water availability and flood potential is high during the 3–4 months of the monsoon season. Yet, the highest demands occur during the 8–9 months of the non-monsoon period. Addressing this mismatch requires substantial additional storage for both flood reduction and improvements in water supply. Due to hydrogeological, environmental, and social constraints, expansion of surface storage in the Ganges River Basin is problematic. A range of interventions that focus more on the use of subsurface storage (SSS), and on the acceleration of surface–subsurface water exchange, have long been known as the "Ganges Water Machine". One approach for providing such SSS is through additional pumping prior to the onset of the monsoon season. An important necessary condition for creating such SSS is the degree of unmet water demand. This paper highlights that an unmet water demand ranging from 59 to 119 Bm3 exists under two different irrigation water use scenarios: (i) to increase Rabi and hot weather season irrigation to the entire irrigable area, and (ii) to provide Rabi and hot weather season irrigation to the entire cropped area. This paper shows that SSS can enhance water supply, and provide benefits for irrigation and other water use sectors. In addition, it can buffer the inherent variability in water supply and mitigate extreme flooding, especially in the downstream parts of the basin. It can also increase river flow during low-flow months via baseflow or enable the re-allocation of irrigation canal water. Importantly, SSS can mitigate the negative effects of both flooding and water scarcity in the same year, which often affects the most vulnerable segments of society – women and children, the poor and other disadvantaged social groups.

2016 ◽  
Vol 20 (3) ◽  
pp. 1085-1101 ◽  
Author(s):  
Upali Ananda Amarasinghe ◽  
Lal Muthuwatta ◽  
Lagudu Surinaidu ◽  
Sumit Anand ◽  
Sharad Kumar Jain

Abstract. The Ganges River basin faces severe water challenges related to a mismatch between supply and demand. Although the basin has abundant surface water and groundwater resources, the seasonal monsoon causes a mismatch between supply and demand as well as flooding. Water availability and flood potential is high during the 3–4 months (June–September) of the monsoon season. Yet, the highest demands occur during the 8–9 months (October–May) of the non-monsoon period. Addressing this mismatch, which is likely to increase with increasing demand, requires substantial additional storage for both flood reduction and improvements in water supply. Due to hydrogeological, environmental, and social constraints, expansion of surface storage in the Ganges River basin is problematic. A range of interventions that focus more on the use of subsurface storage (SSS), and on the acceleration of surface–subsurface water exchange, has long been known as the Ganges Water Machine (GWM). The approach of the GWM for providing such SSS is through additional pumping and depleting of the groundwater resources prior to the onset of the monsoon season and recharging the SSS through monsoon surface runoff. An important condition for creating such SSS is the degree of unmet water demand. The paper shows that the potential unmet water demand ranging from 59 to 124 Bm3 year−1 exists under two different irrigation water use scenarios: (i) to increase irrigation in the Rabi (November–March) and hot weather (April–May) seasons in India, and the Aman (July–November) and Boro (December–May) seasons in Bangladesh, to the entire irrigable area, and (ii) to provide irrigation to Rabi and the hot weather season in India and the Aman and Boro seasons in Bangladesh to the entire cropped area. However, the potential for realizing the unmet irrigation demand is high only in 7 sub-basins in the northern and eastern parts, is moderate to low in 11 sub-basins in the middle, and has little or no potential in 4 sub-basins in the western part of the Ganges basin. Overall, a revived GWM plan has the potential to meet 45–84 Bm3year−1 of unmet water demand.


2016 ◽  
Author(s):  
U. A. Amarasinghe ◽  
L. Muthuwatta ◽  
V. Smakhtin ◽  
L. Surinaidu ◽  
R. Natarajan ◽  
...  

Insight ◽  
2019 ◽  
Vol 22 (3) ◽  
pp. 28-33 ◽  
Author(s):  
Omar El‐Haloush ◽  
Stephen Powley ◽  
Yash Kaushik ◽  
David Flanigan ◽  
Joseph Sitomer

2021 ◽  
Author(s):  
Md Shajedul Islam ◽  
Md. Golam Mostafa

Abstract Groundwater is a vital source of irrigation water, and it provides over 80% of the irrigated water supply in Bangladesh. The study aimed to assess the status of irrigation water of the Ganges river basin areas in the middle-west part of Bangladesh through the hydrogeochemical characterization and classification of groundwater. The study parameters were pH, EC, TDS, Ca2+, Mg2+, total hardness, Na+, K+, B, Cl−, HCO3 −, SO 42−, NO3 −, and PO43− along with irrigation water quality index (IWQindex), Na%, soluble sodium percentage, sodium adsorption ratio, residual sodium bicarbonate, magnesium adsorption ratio, permeability index, and Kelley’s ratio. The results showed that most of the water samples were acidic in the pre-monsoon and alkaline in the post-monsoon seasons, and the water type was Ca-HCO3. The significant geochemical process in the area determined was calcite and dolomite mineral dissolution, and there was no active cation exchange, and silicate weathering occurred. The statistical analyses showed that both the geogenic and anthropogenic sources were controlling the chemistry of the groundwater aquifers. Concerning irrigation water quality, the results revealed that all the quality parameters and IWQindex (32.04 to 45.39) were within the safety ranges, except for the EC and total hardness. The study results would be useful for future groundwater monitoring and management of the Ganges basin areas of Bangladesh part.


2016 ◽  
Vol 208 ◽  
pp. 704-713 ◽  
Author(s):  
Brij Mohan Sharma ◽  
Girija K. Bharat ◽  
Shresth Tayal ◽  
Thorjørn Larssen ◽  
Jitka Bečanová ◽  
...  

Water Policy ◽  
2011 ◽  
Vol 14 (1) ◽  
pp. 67-79 ◽  
Author(s):  
Heather R. Hosterman ◽  
Peter G. McCornick ◽  
Elizabeth J. Kistin ◽  
Bharat Sharma ◽  
Luna Bharati

Climate change is one of the drivers of change in the Ganges River Basin, together with population growth, economic development and water management practices. These changing circumstances have a significant impact on key social and economic sectors of the basin, largely through changes in water quantity, quality and timing of availability. This paper evaluates the impact of water on changing circumstances in three sectors of the Ganges Basin – agriculture, ecosystems and energy. Given the inherent interconnectedness of these core sectors and the cross-cutting impact of changing circumstances on water resources, we argue that adaptation should not be viewed as a separate initiative, but rather as a goal and perspective incorporated into every level of planning and decision making. Adaptation to changing circumstances will need to be closely linked to water resource management and will require significant collaboration across the sectors.


Sign in / Sign up

Export Citation Format

Share Document