scholarly journals Simulation and validation of subsurface lateral flow paths in an agricultural landscape

2009 ◽  
Vol 6 (2) ◽  
pp. 2893-2929 ◽  
Author(s):  
Q. Zhu ◽  
H. S. Lin

Abstract. The importance of soil water flow paths to the transport of nutrients and contaminants has long been recognized. However, effective means of detecting subsurface flow paths in a large landscape is still lacking. The flow direction and accumulation algorithm in GIS hydrologic modeling is a cost effective way to simulate potential flow paths over a large area. This study tested this algorithm for simulating lateral flow paths at three interfaces in soil profiles in a 19.5-ha agricultural landscape in central Pennsylvania, USA. These interfaces were (1) the surface plowed layers (Ap1 and Ap2 horizons) interface, (2) the interface with subsoil clay layer where clay content increased to over 40%, and (3) soil-bedrock interface. The simulated flow paths were validated through soil hydrologic monitoring, geophysical surveys, and observable soil morphological features. The results confirmed that subsurface lateral flow occurred at the interfaces with the clay layer and the underlying bedrock. At these two interfaces, the soils on the simulated flow paths were closer to saturation and showed more temporally unstable moisture dynamics than those off the simulated flow paths. Apparent electrical conductivity in the soil on the simulated flow paths was elevated and temporally unstable as compared to those outside the simulated paths. The soil cores collected from the simulated flow paths showed significantly higher Mn contents at these interfaces than those away from the simulated paths. These results suggest that (1) the algorithm is useful in simulating possible subsurface lateral flow paths if used appropriately with sufficiently detailed digital elevation model; (2) repeated electromagnetic surveys can reflect the temporal change of soil water storage and thus is an indicator of soil water movement over the landscape; and (3) observable Mn content in soil profiles can be used as a simple indicator of water flow paths in soils and over the landscape.

2009 ◽  
Vol 13 (8) ◽  
pp. 1503-1518 ◽  
Author(s):  
Q. Zhu ◽  
H. S. Lin

Abstract. The importance of soil water flow paths to the transport of nutrients and contaminants has long been recognized. However, effective means of detecting concentrated subsurface flow paths in a large landscape are still lacking. The flow direction and accumulation algorithm based on single-direction flow algorithm (D8) in GIS hydrologic modeling is a cost-effective way to simulate potential concentrated flow paths over a large area once relevant data are collected. This study tested the D8 algorithm for simulating concentrated lateral flow paths at three interfaces in soil profiles in a 19.5-ha agricultural landscape in central Pennsylvania, USA. These interfaces were (1) the interface between surface plowed layers of Ap1 and Ap2 horizons, (2) the interface with subsoil water-restricting clay layer where clay content increased to over 40%, and (3) the soil-bedrock interface. The simulated flow paths were validated through soil hydrologic monitoring, geophysical surveys, and observable soil morphological features. The results confirmed that concentrated subsurface lateral flow occurred at the interfaces with the clay layer and the underlying bedrock. At these two interfaces, the soils on the simulated flow paths were closer to saturation and showed more temporally unstable moisture dynamics than those off the simulated flow paths. Apparent electrical conductivity in the soil on the simulated flow paths was elevated and temporally unstable as compared to those outside the simulated paths. The soil cores collected from the simulated flow paths showed significantly higher Mn content at these interfaces than those away from the simulated paths. These results suggest that (1) the D8 algorithm is useful in simulating possible concentrated subsurface lateral flow paths if used with appropriate threshold value of contributing area and sufficiently detailed digital elevation model (DEM); (2) repeated electromagnetic surveys can reflect the temporal change of soil water storage and thus is a useful indicator of possible subsurface flow path over a large area; and (3) observable Mn distribution in soil profiles can be used as a simple indicator of water flow paths in soils and over the landscape; however, it does require sufficient soil sampling (by excavation or augering) to possibly infer landscape-scale subsurface flow paths. In areas where subsurface interface topography varies similarly with surface topography, surface DEM can be used to simulate potential subsurface lateral flow path reasonably so the cost associated with obtaining depth to subsurface water-restricting layer can be minimized.


Chemosphere ◽  
2018 ◽  
Vol 193 ◽  
pp. 1198-1206 ◽  
Author(s):  
K. Lüneberg ◽  
B. Prado ◽  
M. Broszat ◽  
P. Dalkmann ◽  
D. Díaz ◽  
...  

Ecohydrology ◽  
2019 ◽  
Vol 12 (6) ◽  
Author(s):  
Ilda Entraigas ◽  
Natalia Vercelli ◽  
Luisa Fajardo

Energies ◽  
2020 ◽  
Vol 13 (16) ◽  
pp. 4235
Author(s):  
Pengyu Chen ◽  
Mauricio Fiallos-Torres ◽  
Yuzhong Xing ◽  
Wei Yu ◽  
Chunqiu Guo ◽  
...  

In this study, the non-intrusive embedded discrete fracture model (EDFM) in combination with the Oda method are employed to characterize natural fracture networks fast and accurately, by identifying the dominant water flow paths through spatial connectivity analysis. The purpose of this study is to present a successful field case application in which a novel workflow integrates field data, discrete fracture network (DFN), and production analysis with spatial fracture connectivity analysis to characterize dominant flow paths for water intrusion in a field-scale numerical simulation. Initially, the water intrusion of single-well sector models was history matched. Then, resulting parameters of the single-well models were incorporated into the full field model, and the pressure and water breakthrough of all the producing wells were matched. Finally, forecast results were evaluated. Consequently, one of the findings is that wellbore connectivity to the fracture network has a considerable effect on characterizing the water intrusion in fractured gas reservoirs. Additionally, dominant water flow paths within the fracture network, easily modeled by EDFM as effective fracture zones, aid in understanding and predicting the water intrusion phenomena. Therefore, fracture clustering as shortest paths from the water contacts to the wellbore endorses the results of the numerical simulation. Finally, matching the breakthrough time depends on merging responses from multiple dominant water flow paths within the distributions of the fracture network. The conclusions of this investigation are crucial to field modeling and the decision-making process of well operation by anticipating water intrusion behavior through probable flow paths within the fracture networks.


Ground Water ◽  
1990 ◽  
Vol 28 (4) ◽  
pp. 551-558 ◽  
Author(s):  
Steven J. Fritz ◽  
Hector J. Lopez ◽  
Michael P. Wilson

Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-13
Author(s):  
Deqing Gan ◽  
Xi Yang ◽  
Yunpeng Zhang

The stability of iron tailings dam is affected by the permeability of tailings. Considering the influence of it, it is necessary to analyze the permeability of tailings so as to prevent the recurrence of Brazilian iron tailings dam accidents. Nevertheless, the results of iron tailings permeability from some prediction equations (Terzaghi equation, Hazen equation, and Kozeny equation) cannot be accurate. Iron tailings are various as they can be divided into three categories: (1) silt content is less than 40%; (2) silt content is more than 40%, while clay content is less than 15%; and (3) clay content is more than 15% and less than 30%. Correspondingly, three equations are proposed to calculate the disturbed and iron undisturbed tailings permeability for the three types. And more accurate results come from it. The water-flow paths of the iron tailings are blocked after compaction, and the critical pressure of iron tailings blockage is 200 kPa. Although the porosity is large, some of the pores are isolated from each other when the pressure is larger than 200 kPa. However, porosity becomes too large for permeability calculation after compaction and the calculated permeability gets larger as well (equations (24)–(26)). Correcting the permeability calculation equations is an absolute must. The calculated permeability by the revised equations becomes more accurate (equations (27)–(29)). In fact, the granulometric characteristics necessarily play a vital role in the evolution of the pore interconnections by blocking the water-flow paths and modifying the morphological parameters. More research studies are required to be done in the future.


Sign in / Sign up

Export Citation Format

Share Document