scholarly journals Coupled hydrogeophysical parameter estimation using a sequential Bayesian approach

2009 ◽  
Vol 6 (5) ◽  
pp. 6387-6424 ◽  
Author(s):  
J. Rings ◽  
J. A. Huisman ◽  
H. Vereecken

Abstract. Coupled hydrogeophysical methods infer hydrological and petrophysical parameters directly from geophysical measurements. Widespread methods do not explicitly recognize uncertainty in parameter estimates. Therefore, we apply a sequential Bayesian framework that provides updates of state, parameters and their uncertainty whenever measurements become available. We have coupled a hydrological and an electrical resistivity tomography (ERT) forward code in a particle filtering framework. First, we analyze a synthetic data set of lysimeter infiltration monitored with ERT. In a second step, we apply the approach to field data measured during an infiltration event on a full-scale dike model. For the synthetic data, the water content distribution and the hydraulic conductivity are accurately estimated after a few time steps. For the field data, hydraulic parameters are successfully estimated from water content measurements made with spatial time domain reflectometry and ERT, and the development of their posterior distributions is shown.

2010 ◽  
Vol 14 (3) ◽  
pp. 545-556 ◽  
Author(s):  
J. Rings ◽  
J. A. Huisman ◽  
H. Vereecken

Abstract. Coupled hydrogeophysical methods infer hydrological and petrophysical parameters directly from geophysical measurements. Widespread methods do not explicitly recognize uncertainty in parameter estimates. Therefore, we apply a sequential Bayesian framework that provides updates of state, parameters and their uncertainty whenever measurements become available. We have coupled a hydrological and an electrical resistivity tomography (ERT) forward code in a particle filtering framework. First, we analyze a synthetic data set of lysimeter infiltration monitored with ERT. In a second step, we apply the approach to field data measured during an infiltration event on a full-scale dike model. For the synthetic data, the water content distribution and the hydraulic conductivity are accurately estimated after a few time steps. For the field data, hydraulic parameters are successfully estimated from water content measurements made with spatial time domain reflectometry and ERT, and the development of their posterior distributions is shown.


Geophysics ◽  
2009 ◽  
Vol 74 (6) ◽  
pp. WCA199-WCA209 ◽  
Author(s):  
Guojian Shan ◽  
Robert Clapp ◽  
Biondo Biondi

We have extended isotropic plane-wave migration in tilted coordinates to 3D anisotropic media and applied it on a Gulf of Mexico data set. Recorded surface data are transformed to plane-wave data by slant-stack processing in inline and crossline directions. The source plane wave and its corresponding slant-stacked data are extrapolated into the subsurface within a tilted coordinate system whose direction depends on the propagation direction of the plane wave. Images are generated by crosscorrelating these two wavefields. The shot sampling is sparse in the crossline direction, and the source generated by slant stacking is not really a plane-wave source but a phase-encoded source. We have discovered that phase-encoded source migration in tilted coordinates can image steep reflectors, using 2D synthetic data set examples. The field data example shows that 3D plane-wave migration in tilted coordinates can image steeply dipping salt flanks and faults, even though the one-way wave-equation operator is used for wavefield extrapolation.


Geophysics ◽  
2008 ◽  
Vol 73 (4) ◽  
pp. J15-J23 ◽  
Author(s):  
Holger Gerhards ◽  
Ute Wollschläger ◽  
Qihao Yu ◽  
Philip Schiwek ◽  
Xicai Pan ◽  
...  

Ground-penetrating radar is a fast noninvasive technique that can monitor subsurface structure and water-content distribution. To interpret traveltime information from single common-offset measurements, additional assumptions, such as constant permittivity, usually are required. We present a fast ground-penetrating-radar measurement technique using a multiple transmitter-and-receiver setup to measure simultaneously the reflector depth and average soil-water content. It can be considered a moving minicommon-midpoint measurement. For a simple analysis, we use a straightforward evaluation procedure that includes two traveltimes to the same reflector, obtained from different antenna separations. For a more accurate approach, an inverse evaluation procedure is added, using traveltimes obtained from all antenna separations at one position and its neighboring measurement locations. The evaluation of a synthetic data set with a lateral variability in reflector depth and an experimental example with a large variability in soil-water content are introduced to demonstrate the applicability for field-scale measurements. The crucial point for this application is the access to absolute traveltimes, which are difficult to determine accurately from common-offset measurements.


Geophysics ◽  
2016 ◽  
Vol 81 (3) ◽  
pp. V213-V225 ◽  
Author(s):  
Shaohuan Zu ◽  
Hui Zhou ◽  
Yangkang Chen ◽  
Shan Qu ◽  
Xiaofeng Zou ◽  
...  

We have designed a periodically varying code that can avoid the problem of the local coherency and make the interference distribute uniformly in a given range; hence, it was better at suppressing incoherent interference (blending noise) and preserving coherent useful signals compared with a random dithering code. We have also devised a new form of the iterative method to remove interference generated from the simultaneous source acquisition. In each iteration, we have estimated the interference using the blending operator following the proposed formula and then subtracted the interference from the pseudodeblended data. To further eliminate the incoherent interference and constrain the inversion, the data were then transformed to an auxiliary sparse domain for applying a thresholding operator. During the iterations, the threshold was decreased from the largest value to zero following an exponential function. The exponentially decreasing threshold aimed to gradually pass the deblended data to a more acceptable model subspace. Two numerically blended synthetic data sets and one numerically blended practical field data set from an ocean bottom cable were used to demonstrate the usefulness of our proposed method and the better performance of the periodically varying code over the traditional random dithering code.


2011 ◽  
Vol 2011 ◽  
pp. 1-11 ◽  
Author(s):  
C. Campi ◽  
A. Pascarella ◽  
A. Sorrentino ◽  
M. Piana

Automatic estimation of current dipoles from biomagnetic data is still a problematic task. This is due not only to the ill-posedness of the inverse problem but also to two intrinsic difficulties introduced by the dipolar model: the unknown number of sources and the nonlinear relationship between the source locations and the data. Recently, we have developed a new Bayesian approach, particle filtering, based on dynamical tracking of the dipole constellation. Contrary to many dipole-based methods, particle filtering does not assume stationarity of the source configuration: the number of dipoles and their positions are estimated and updated dynamically during the course of the MEG sequence. We have now developed a Matlab-based graphical user interface, which allows nonexpert users to do automatic dipole estimation from MEG data with particle filtering. In the present paper, we describe the main features of the software and show the analysis of both a synthetic data set and an experimental dataset.


Geophysics ◽  
2016 ◽  
Vol 81 (3) ◽  
pp. S87-S100 ◽  
Author(s):  
Hao Hu ◽  
Yike Liu ◽  
Yingcai Zheng ◽  
Xuejian Liu ◽  
Huiyi Lu

Least-squares migration (LSM) can be effective to mitigate the limitation of finite-seismic acquisition, balance the subsurface illumination, and improve the spatial resolution of the image, but it requires iterations of migration and demigration to obtain the desired subsurface reflectivity model. The computational efficiency and accuracy of migration and demigration operators are crucial for applying the algorithm. We have developed a test of the feasibility of using the Gaussian beam as the wavefield extrapolating operator for the LSM, denoted as least-squares Gaussian beam migration. Our method combines the advantages of the LSM and the efficiency of the Gaussian beam propagator. Our numerical evaluations, including two synthetic data sets and one marine field data set, illustrate that the proposed approach could be used to obtain amplitude-balanced images and to broaden the bandwidth of the migrated images in particular for the low-wavenumber components.


Soil Research ◽  
2001 ◽  
Vol 39 (6) ◽  
pp. 1371 ◽  
Author(s):  
P. N. J. Lane ◽  
D. H. Mackenzie

Time domain reflectometry (TDR) and a frequency domain sensor, the Didcot Capacitance Probe, were tested in the field and laboratory. The results from an undisturbed large core TDR laboratory test found the Topp equation returned a close correspondence to thermogravimetrically derived water content, although there was a slight underestimation. Coefficients of determination and efficiency were >0.98 and 0.92, respectively, for individual cores, and 0.98 and 0.97 for the whole data set. The field exercise revealed the Topp equation to be superior to the laboratory derived equation and other published empirical equations, suggesting the Topp equation to be adequate. A field test of the capacitance probe found poor correspondence between measured and predicted observations of profile point soil water content. Although 81% of the variance was explained by the calibration regression, there was a poor fit to the 1:1 line (E = 0.34), and a non-significant relationship between measured and predicted soil water content for the A horizon. The instrument design proved problematic for use as a determiner of point profile soil water content, and the recommended calibration procedure was impossible in the study site soils.


Geophysics ◽  
2017 ◽  
Vol 82 (3) ◽  
pp. S197-S205 ◽  
Author(s):  
Zhaolun Liu ◽  
Abdullah AlTheyab ◽  
Sherif M. Hanafy ◽  
Gerard Schuster

We have developed a methodology for detecting the presence of near-surface heterogeneities by naturally migrating backscattered surface waves in controlled-source data. The near-surface heterogeneities must be located within a depth of approximately one-third the dominant wavelength [Formula: see text] of the strong surface-wave arrivals. This natural migration method does not require knowledge of the near-surface phase-velocity distribution because it uses the recorded data to approximate the Green’s functions for migration. Prior to migration, the backscattered data are separated from the original records, and the band-passed filtered data are migrated to give an estimate of the migration image at a depth of approximately one-third [Formula: see text]. Each band-passed data set gives a migration image at a different depth. Results with synthetic data and field data recorded over known faults validate the effectiveness of this method. Migrating the surface waves in recorded 2D and 3D data sets accurately reveals the locations of known faults. The limitation of this method is that it requires a dense array of receivers with a geophone interval less than approximately one-half [Formula: see text].


Geophysics ◽  
1985 ◽  
Vol 50 (11) ◽  
pp. 1701-1720 ◽  
Author(s):  
Glyn M. Jones ◽  
D. B. Jovanovich

A new technique is presented for the inversion of head‐wave traveltimes to infer near‐surface structure. Traveltimes computed along intersecting pairs of refracted rays are used to reconstruct the shape of the first refracting horizon beneath the surface and variations in refractor velocity along this boundary. The information derived can be used as the basis for further processing, such as the calculation of near‐surface static delays. One advantage of the method is that the shape of the refractor is determined independently of the refractor velocity. With multifold coverage, rapid lateral changes in refractor geometry or velocity can be mapped. Two examples of the inversion technique are presented: one uses a synthetic data set; the other is drawn from field data shot over a deep graben filled with sediment. The results obtained using the synthetic data validate the method and support the conclusions of an error analysis, in which errors in the refractor velocity determined using receivers to the left and right of the shots are of opposite sign. The true refractor velocity therefore falls between the two sets of estimates. The refraction image obtained by inversion of the set of field data is in good agreement with a constant‐velocity reflection stack and illustrates that the ray inversion method can handle large lateral changes in refractor velocity or relief.


Soil Research ◽  
2002 ◽  
Vol 40 (3) ◽  
pp. 555 ◽  
Author(s):  
P. N. J. Lane ◽  
D. H. Mackenzie ◽  
A. D. Nadler

Time domain reflectometry (TDR) and a frequency domain sensor, the Didcot Capacitance Probe, were tested in the field and laboratory. The results from an undisturbed large core TDR laboratory test found the Topp equation returned a close correspondence to thermogravimetrically derived water content, although there was a slight underestimation. Coefficients of determination and efficiency were >0.98 and 0.92, respectively, for individual cores, and 0.98 and 0.97 for the whole data set. The field exercise revealed the Topp equation to be superior to the laboratory derived equation and other published empirical equations, suggesting the Topp equation to be adequate. A field test of the capacitance probe found poor correspondence between measured and predicted observations of profile point soil water content. Although 81% of the variance was explained by the calibration regression, there was a poor fit to the 1:1 line (E = 0.34), and a non-significant relationship between measured and predicted soil water content for the A horizon. The instrument design proved problematic for use as a determiner of point profile soil water content, and the recommended calibration procedure was impossible in the study site soils.


Sign in / Sign up

Export Citation Format

Share Document