A periodically varying code for improving deblending of simultaneous sources in marine acquisition

Geophysics ◽  
2016 ◽  
Vol 81 (3) ◽  
pp. V213-V225 ◽  
Author(s):  
Shaohuan Zu ◽  
Hui Zhou ◽  
Yangkang Chen ◽  
Shan Qu ◽  
Xiaofeng Zou ◽  
...  

We have designed a periodically varying code that can avoid the problem of the local coherency and make the interference distribute uniformly in a given range; hence, it was better at suppressing incoherent interference (blending noise) and preserving coherent useful signals compared with a random dithering code. We have also devised a new form of the iterative method to remove interference generated from the simultaneous source acquisition. In each iteration, we have estimated the interference using the blending operator following the proposed formula and then subtracted the interference from the pseudodeblended data. To further eliminate the incoherent interference and constrain the inversion, the data were then transformed to an auxiliary sparse domain for applying a thresholding operator. During the iterations, the threshold was decreased from the largest value to zero following an exponential function. The exponentially decreasing threshold aimed to gradually pass the deblended data to a more acceptable model subspace. Two numerically blended synthetic data sets and one numerically blended practical field data set from an ocean bottom cable were used to demonstrate the usefulness of our proposed method and the better performance of the periodically varying code over the traditional random dithering code.

Geophysics ◽  
2016 ◽  
Vol 81 (3) ◽  
pp. S87-S100 ◽  
Author(s):  
Hao Hu ◽  
Yike Liu ◽  
Yingcai Zheng ◽  
Xuejian Liu ◽  
Huiyi Lu

Least-squares migration (LSM) can be effective to mitigate the limitation of finite-seismic acquisition, balance the subsurface illumination, and improve the spatial resolution of the image, but it requires iterations of migration and demigration to obtain the desired subsurface reflectivity model. The computational efficiency and accuracy of migration and demigration operators are crucial for applying the algorithm. We have developed a test of the feasibility of using the Gaussian beam as the wavefield extrapolating operator for the LSM, denoted as least-squares Gaussian beam migration. Our method combines the advantages of the LSM and the efficiency of the Gaussian beam propagator. Our numerical evaluations, including two synthetic data sets and one marine field data set, illustrate that the proposed approach could be used to obtain amplitude-balanced images and to broaden the bandwidth of the migrated images in particular for the low-wavenumber components.


Geophysics ◽  
2017 ◽  
Vol 82 (3) ◽  
pp. S197-S205 ◽  
Author(s):  
Zhaolun Liu ◽  
Abdullah AlTheyab ◽  
Sherif M. Hanafy ◽  
Gerard Schuster

We have developed a methodology for detecting the presence of near-surface heterogeneities by naturally migrating backscattered surface waves in controlled-source data. The near-surface heterogeneities must be located within a depth of approximately one-third the dominant wavelength [Formula: see text] of the strong surface-wave arrivals. This natural migration method does not require knowledge of the near-surface phase-velocity distribution because it uses the recorded data to approximate the Green’s functions for migration. Prior to migration, the backscattered data are separated from the original records, and the band-passed filtered data are migrated to give an estimate of the migration image at a depth of approximately one-third [Formula: see text]. Each band-passed data set gives a migration image at a different depth. Results with synthetic data and field data recorded over known faults validate the effectiveness of this method. Migrating the surface waves in recorded 2D and 3D data sets accurately reveals the locations of known faults. The limitation of this method is that it requires a dense array of receivers with a geophone interval less than approximately one-half [Formula: see text].


Geophysics ◽  
2020 ◽  
Vol 85 (2) ◽  
pp. V131-V141 ◽  
Author(s):  
Shaohuan Zu ◽  
Junxing Cao ◽  
Shan Qu ◽  
Yangkang Chen

Simultaneous source technology can accelerate data acquisition and improve subsurface illumination. But those advantages are compromised due to dense interference. To address the intense interference in simultaneous source data, we have investigated a method based on a deep neural network. The designed architecture consists of convolutional and deconvolutional networks. The convolutional network can learn the local features of the training data set, and the deconvolutional network constructs the output using the extracted features to match the ground truth. Because the main computational cost results from the optimization of the network parameters, the trained network can separate simultaneous source data efficiently. Besides, with the given dithering code, we embed the trained network into an iterative framework that can further improve the deblending. A numerical test on synthetic data demonstrates that the iterative framework with the trained network can obtain comparable performance with high efficiency compared to the conventional method. Next, we test our method with two different trained networks (one is from a synthetic data set, and the other is from a field data set) on field data. The test results confirm the performance of our method.


Geophysics ◽  
2021 ◽  
pp. 1-47
Author(s):  
N. A. Vinard ◽  
G. G. Drijkoningen ◽  
D. J. Verschuur

Hydraulic fracturing plays an important role when it comes to the extraction of resources in unconventional reservoirs. The microseismic activity arising during hydraulic fracturing operations needs to be monitored to both improve productivity and to make decisions about mitigation measures. Recently, deep learning methods have been investigated to localize earthquakes given field-data waveforms as input. For optimal results, these methods require large field data sets that cover the entire region of interest. In practice, such data sets are often scarce. To overcome this shortcoming, we propose initially to use a (large) synthetic data set with full waveforms to train a U-Net that reconstructs the source location as a 3D Gaussian distribution. As field data set for our study we use data recorded during hydraulic fracturing operations in Texas. Synthetic waveforms were modelled using a velocity model from the site that was also used for a conventional diffraction-stacking (DS) approach. To increase the U-Nets’ ability to localize seismic events, we augmented the synthetic data with different techniques, including the addition of field noise. We select the best performing U-Net using 22 events that have previously been identified to be confidently localized by DS and apply that U-Net to all 1245 events. We compare our predicted locations to DS and the DS locations refined by a relative location (DSRL) method. The U-Net based locations are better constrained in depth compared to DS and the mean hypocenter difference with respect to DSRL locations is 163 meters. This shows potential for the use of synthetic data to complement or replace field data for training. Furthermore, after training, the method returns the source locations in near real-time given the full waveforms, alleviating the need to pick arrival times.


2014 ◽  
Vol 7 (3) ◽  
pp. 781-797 ◽  
Author(s):  
P. Paatero ◽  
S. Eberly ◽  
S. G. Brown ◽  
G. A. Norris

Abstract. The EPA PMF (Environmental Protection Agency positive matrix factorization) version 5.0 and the underlying multilinear engine-executable ME-2 contain three methods for estimating uncertainty in factor analytic models: classical bootstrap (BS), displacement of factor elements (DISP), and bootstrap enhanced by displacement of factor elements (BS-DISP). The goal of these methods is to capture the uncertainty of PMF analyses due to random errors and rotational ambiguity. It is shown that the three methods complement each other: depending on characteristics of the data set, one method may provide better results than the other two. Results are presented using synthetic data sets, including interpretation of diagnostics, and recommendations are given for parameters to report when documenting uncertainty estimates from EPA PMF or ME-2 applications.


Geophysics ◽  
2002 ◽  
Vol 67 (4) ◽  
pp. 1028-1037 ◽  
Author(s):  
R. James Brown ◽  
Robert R. Stewart ◽  
Don C. Lawton

This paper proposes a multicomponent acquisition and preprocessing polarity standard that will apply generally to the three Cartesian geophone components and the hydrophone or microphone components of a 2‐D or 3‐D multicomponent survey on land, at the sea bottom, acquired as a vertical seismic profile, vertical‐cable, or marine streamer survey. We use a four‐component ocean‐bottom data set for purposes of illustration and example. A primary objective is a consistent system of polarity specifications to facilitate consistent horizon correlation among multicomponent data sets and enable determination of correct reflectivity polarity. The basis of this standard is the current SEG polarity standard, first enunciated as a field‐recording standard for vertical geophone data and hydrophone streamer data. It is founded on a right‐handed coordinate system: z positive downward; x positive in the forward line direction in a 2‐D survey, or a specified direction in a 3‐D survey, usually that of the receiver‐cable lines; and y positive in the direction 90° clockwise from x. The polarities of these axes determine the polarity of ground motion in any component direction (e.g., downward ground motion recording as positive values on the vertical‐geophone trace). According also to this SEG standard, a pressure decrease is to be recorded as positive output on the hydrophone trace. We also recommend a cyclic indexing convention, [W, X, Y, Z] or [0, 1, 2, 3], to denote hydrophone or microphone (pressure), inline (radial) geophone, crossline (transverse) geophone, and vertical geophone, respectively. We distinguish among three kinds of polarity standard: acquisition, preprocessing, and final‐display standards. The acquisition standard (summarized in the preceding paragraph) relates instrument output solely to sense of ground motion (geophones) and of pressure change (hydrophones). Polarity considerations beyond this [involving, e.g., source type, wave type (P or S), direction of arrival, anisotropy, tap‐test adjustments, etc.] fall under preprocessing polarity standards. We largely defer any consideration of a display standard.


2010 ◽  
Vol 14 (3) ◽  
pp. 545-556 ◽  
Author(s):  
J. Rings ◽  
J. A. Huisman ◽  
H. Vereecken

Abstract. Coupled hydrogeophysical methods infer hydrological and petrophysical parameters directly from geophysical measurements. Widespread methods do not explicitly recognize uncertainty in parameter estimates. Therefore, we apply a sequential Bayesian framework that provides updates of state, parameters and their uncertainty whenever measurements become available. We have coupled a hydrological and an electrical resistivity tomography (ERT) forward code in a particle filtering framework. First, we analyze a synthetic data set of lysimeter infiltration monitored with ERT. In a second step, we apply the approach to field data measured during an infiltration event on a full-scale dike model. For the synthetic data, the water content distribution and the hydraulic conductivity are accurately estimated after a few time steps. For the field data, hydraulic parameters are successfully estimated from water content measurements made with spatial time domain reflectometry and ERT, and the development of their posterior distributions is shown.


Author(s):  
Danlei Xu ◽  
Lan Du ◽  
Hongwei Liu ◽  
Penghui Wang

A Bayesian classifier for sparsity-promoting feature selection is developed in this paper, where a set of nonlinear mappings for the original data is performed as a pre-processing step. The linear classification model with such mappings from the original input space to a nonlinear transformation space can not only construct the nonlinear classification boundary, but also realize the feature selection for the original data. A zero-mean Gaussian prior with Gamma precision and a finite approximation of Beta process prior are used to promote sparsity in the utilization of features and nonlinear mappings in our model, respectively. We derive the Variational Bayesian (VB) inference algorithm for the proposed linear classifier. Experimental results based on the synthetic data set, measured radar data set, high-dimensional gene expression data set, and several benchmark data sets demonstrate the aggressive and robust feature selection capability and comparable classification accuracy of our method comparing with some other existing classifiers.


Geophysics ◽  
2017 ◽  
Vol 82 (3) ◽  
pp. R199-R217 ◽  
Author(s):  
Xintao Chai ◽  
Shangxu Wang ◽  
Genyang Tang

Seismic data are nonstationary due to subsurface anelastic attenuation and dispersion effects. These effects, also referred to as the earth’s [Formula: see text]-filtering effects, can diminish seismic resolution. We previously developed a method of nonstationary sparse reflectivity inversion (NSRI) for resolution enhancement, which avoids the intrinsic instability associated with inverse [Formula: see text] filtering and generates superior [Formula: see text] compensation results. Applying NSRI to data sets that contain multiples (addressing surface-related multiples only) requires a demultiple preprocessing step because NSRI cannot distinguish primaries from multiples and will treat them as interference convolved with incorrect [Formula: see text] values. However, multiples contain information about subsurface properties. To use information carried by multiples, with the feedback model and NSRI theory, we adapt NSRI to the context of nonstationary seismic data with surface-related multiples. Consequently, not only are the benefits of NSRI (e.g., circumventing the intrinsic instability associated with inverse [Formula: see text] filtering) extended, but also multiples are considered. Our method is limited to be a 1D implementation. Theoretical and numerical analyses verify that given a wavelet, the input [Formula: see text] values primarily affect the inverted reflectivities and exert little effect on the estimated multiples; i.e., multiple estimation need not consider [Formula: see text] filtering effects explicitly. However, there are benefits for NSRI considering multiples. The periodicity and amplitude of the multiples imply the position of the reflectivities and amplitude of the wavelet. Multiples assist in overcoming scaling and shifting ambiguities of conventional problems in which multiples are not considered. Experiments using a 1D algorithm on a synthetic data set, the publicly available Pluto 1.5 data set, and a marine data set support the aforementioned findings and reveal the stability, capabilities, and limitations of the proposed method.


Geophysics ◽  
2019 ◽  
Vol 84 (5) ◽  
pp. E293-E299
Author(s):  
Jorlivan L. Correa ◽  
Paulo T. L. Menezes

Synthetic data provided by geoelectric earth models are a powerful tool to evaluate a priori a controlled-source electromagnetic (CSEM) workflow effectiveness. Marlim R3D (MR3D) is an open-source complex and realistic geoelectric model for CSEM simulations of the postsalt turbiditic reservoirs at the Brazilian offshore margin. We have developed a 3D CSEM finite-difference time-domain forward study to generate the full-azimuth CSEM data set for the MR3D earth model. To that end, we fabricated a full-azimuth survey with 45 towlines striking the north–south and east–west directions over a total of 500 receivers evenly spaced at 1 km intervals along the rugged seafloor of the MR3D model. To correctly represent the thin, disconnected, and complex geometries of the studied reservoirs, we have built a finely discretized mesh of [Formula: see text] cells leading to a large mesh with a total of approximately 90 million cells. We computed the six electromagnetic field components (Ex, Ey, Ez, Hx, Hy, and Hz) at six frequencies in the range of 0.125–1.25 Hz. In our efforts to mimic noise in real CSEM data, we summed to the data a multiplicative noise with a 1% standard deviation. Both CSEM data sets (noise free and noise added), with inline and broadside geometries, are distributed for research or commercial use, under the Creative Common License, at the Zenodo platform.


Sign in / Sign up

Export Citation Format

Share Document