scholarly journals THE COORDINATE TRANSFORMATION METHOD OF HIGH RESOLUTION DEM DATA

Author(s):  
Chaode Yan ◽  
Wang Guo ◽  
Aimin Li

Coordinate transformation methods of DEM data can be divided into two categories. One reconstruct based on original vector elevation data. The other transforms DEM data blocks by transforming parameters. But the former doesn’t work in the absence of original vector data, and the later may cause errors at joint places between adjoining blocks of high resolution DEM data. In view of this problem, a method dealing with high resolution DEM data coordinate transformation is proposed. The method transforms DEM data into discrete vector elevation points, and then adjusts positions of points by bi-linear interpolation respectively. Finally, a TIN is generated by transformed points, and the new DEM data in target coordinate system is reconstructed based on TIN. An algorithm which can find blocks and transform automatically is given in this paper. The method is tested in different terrains and proved to be feasible and valid.

2013 ◽  
Vol 694-697 ◽  
pp. 927-935 ◽  
Author(s):  
Yi Sun ◽  
Tao Ma ◽  
Chia Yung Han ◽  
Joseph Ross ◽  
William Wee

This paper presents a simple and accurate coordinate transformation method for extending the tracking space of the Intersense IS-900 spatial and motion tracking system using multiple pre-configured emitter towers to form the emitter constellation, but without resorting to the use of a surveyor machine. The proposed approach uses the differences of positional coordinate readings from each emitter tower among a set of commonly viewed spatial points to calculate the parameters needed to define the coordinate transformation. By applying this method, the tracking accuracy using the entire emitter constellation can be achieved by less than 0.5 inches error in most of the working space, and as low as 0.2 inches error in the frontal part of the working space.


2013 ◽  
Vol 711 ◽  
pp. 422-425 ◽  
Author(s):  
Yu Hu Zuo

A NURBS surface tool trajectory planning method of engraving robot is proposed. The calculation algorithm including NURBS surface tool trajectory, cutting point and effective cutting radius of end milling cutter and inverse kinematics transform is discussed in detail using Taylor and coordinate transformation method. It is the foundation to further applied to the engraving robot tool trajectory planning or off-line programming.


2012 ◽  
Vol 134 (5) ◽  
Author(s):  
Tinghua Li ◽  
Ming Huang ◽  
Jingjing Yang ◽  
Yaozhong Lan ◽  
Jing Sun

The two-dimensional and three-dimensional acoustic cloaks composed of homogeneous and nonsingular materials are designed by choosing appropriate spatial transformation. The mass density tensor and bulk modulus of the acoustic cloaks with diamond shape are derived, and extended to an acoustic carpet cloak. Performance of the acoustic cloaks is confirmed by full-wave simulation. The work represents an important progress towards the practical realization of the metamaterial-assisted acoustic cloak and expands the application of the coordinate transformation method.


2019 ◽  
Author(s):  
Agung Syetiawan ◽  
Dadan Ramdani ◽  
Ayu Nur Safii ◽  
Yustisi Ardhitasari ◽  
Lumban Gaol ◽  
...  

DGN95 is a static geospatial reference system, in which the change in the value of coordinates towards time as a result of tectonic plate movement and deformation of the earth’s crust, is not considered. Changes in the value of coordinates towards time need to be considered in defining a geospatial reference system for the territory of Indonesia. This is because the territory of Indonesia is located between several tectonic plates which are very dynamic and active. This area of IndoneFor this reason, SRGI2013 was born, a national coordinate system that was consistent and compatible with the global coordinate system. SRGI considers changes in coordinates based on time functions. Problems arise when the coordinates of the old pillar still use the DGN95 datum reference system. Many published maps or geodetic control network use the old coordinate system, then the mapping user has difficulty getting the conversion of coordinates change aforesaid. The purpose of this study is to produce coordinate transformation parameters to change the coordinates of the old datum (DGN95) into coordinates in the SRGI2013 datum. The results of the transformation parameters resulted are used to change coordinates that are still in the old datum. In addition to making it easier for users to transform coordinates. The coordinate transformation method used uses the 3-dimensional coordinate transformation of the Bursa-Wolf model (7 parameters) and the Affinity model (10 parameters).


Sign in / Sign up

Export Citation Format

Share Document