scholarly journals ROLE OF TIE-POINTS DISTRIBUTION IN AERIAL PHOTOGRAPHY

Author(s):  
S. Kerner ◽  
I. Kaufman ◽  
Y. Raizman

Automatic image matching algorithms, and especially feature-based methods, profoundly changed our understanding and requirements of tie points. The number of tie points has increased by orders of magnitude, yet the notions of accuracy and reliability of tie points remain equally important. The spatial distribution of tie points is less predictable, and is subject only to limited control. Feature-based methods also highlighted a conceptual division of the matching process into two separate stages – feature extraction and feature matching. <br><br> In this paper we discuss whether spatial distribution requirements, such as Von Gruber positions, are still relevant to modern matching methods. We argue that forcing such patterns might no longer be required in the feature extraction stage. However, we claim spatial distribution is important in the feature matching stage. <br><br> We will focus on terrains that are notorious for difficult matching, such as water bodies, with real data obtained by users of VisionMap’s A3 Edge camera and LightSpeed photogrammetric suite.

Author(s):  
S. Kerner ◽  
I. Kaufman ◽  
Y. Raizman

Automatic image matching algorithms, and especially feature-based methods, profoundly changed our understanding and requirements of tie points. The number of tie points has increased by orders of magnitude, yet the notions of accuracy and reliability of tie points remain equally important. The spatial distribution of tie points is less predictable, and is subject only to limited control. Feature-based methods also highlighted a conceptual division of the matching process into two separate stages – feature extraction and feature matching. &lt;br&gt;&lt;br&gt; In this paper we discuss whether spatial distribution requirements, such as Von Gruber positions, are still relevant to modern matching methods. We argue that forcing such patterns might no longer be required in the feature extraction stage. However, we claim spatial distribution is important in the feature matching stage. &lt;br&gt;&lt;br&gt; We will focus on terrains that are notorious for difficult matching, such as water bodies, with real data obtained by users of VisionMap’s A3 Edge camera and LightSpeed photogrammetric suite.


2021 ◽  
Vol 5 (4) ◽  
pp. 783-793
Author(s):  
Muhammad Muttabi Hudaya ◽  
Siti Saadah ◽  
Hendy Irawan

needs a solid validation that has verification and matching uploaded images. To solve this problem, this paper implementing a detection model using Faster R-CNN and a matching method using ORB (Oriented FAST and Rotated BRIEF) and KNN-BFM (K-Nearest Neighbor Brute Force Matcher). The goal of the implementations is to reach both an 80% mark of accuracy and prove matching using ORB only can be a replaced OCR technique. The implementation accuracy results in the detection model reach mAP (Mean Average Precision) of 94%. But, the matching process only achieves an accuracy of 43,46%. The matching process using only image feature matching underperforms the previous OCR technique but improves processing time from 4510ms to 60m). Image matching accuracy has proven to increase by using a high-quality dan high quantity dataset, extracting features on the important area of EKTP card images.


2019 ◽  
Vol 11 (24) ◽  
pp. 3026
Author(s):  
Bin Fang ◽  
Kun Yu ◽  
Jie Ma ◽  
Pei An

Seeking reliable correspondence between multispectral images is a fundamental and important task in computer vision. To overcome the nonlinearity problem occurring in multispectral image matching, a novel, edge-feature-based maximum clique-matching frame (EMCM) is proposed, which contains three main parts: (1) a novel strong edge binary feature descriptor, (2) a new correspondence-ranking algorithm based on keypoint distinctiveness analysis algorithms in the feature space of the graph, and (3) a false match removal algorithm based on maximum clique searching in the correspondence space of the graph considering both position and angle consistency. Extensive experiments are conducted on two standard multispectral image datasets with respect to the three parts. The feature-matching experiments suggest that the proposed feature descriptor is of high descriptiveness, robustness, and efficiency. The correspondence-ranking experiments validate the superiority of our correspondences-ranking algorithm over the nearest neighbor algorithm, and the coarse registration experiments show the robustness of EMCM with varied interferences.


Author(s):  
S. J. Chen ◽  
S. Z. Zheng ◽  
Z. G. Xu ◽  
C. C. Guo ◽  
X. L. Ma

Many state-of-the-art image matching methods, based on the feature matching, have been widely studied in the remote sensing field. These methods of feature matching which get highly operating efficiency, have a disadvantage of low accuracy and robustness. This paper proposes an improved image matching method which based on the SURF algorithm. The proposed method introduces color invariant transformation, information entropy theory and a series of constraint conditions to increase feature points detection and matching accuracy. First, the model of color invariant transformation is introduced for two matching images aiming at obtaining more color information during the matching process and information entropy theory is used to obtain the most information of two matching images. Then SURF algorithm is applied to detect and describe points from the images. Finally, constraint conditions which including Delaunay triangulation construction, similarity function and projective invariant are employed to eliminate the mismatches so as to improve matching precision. The proposed method has been validated on the remote sensing images and the result benefits from its high precision and robustness.


2019 ◽  
Vol 11 (12) ◽  
pp. 1418
Author(s):  
Zhaohui Zheng ◽  
Hong Zheng ◽  
Yong Ma ◽  
Fan Fan ◽  
Jianping Ju ◽  
...  

In feature-based image matching, implementing a fast and ultra-robust feature matching technique is a challenging task. To solve the problems that the traditional feature matching algorithm suffers from, such as long running time and low registration accuracy, an algorithm called feedback unilateral grid-based clustering (FUGC) is presented which is able to improve computation efficiency, accuracy and robustness of feature-based image matching while applying it to remote sensing image registration. First, the image is divided by using unilateral grids and then fast coarse screening of the initial matching feature points through local grid clustering is performed to eliminate a great deal of mismatches in milliseconds. To ensure that true matches are not erroneously screened, a local linear transformation is designed to take feedback verification further, thereby performing fine screening between true matching points deleted erroneously and undeleted false positives in and around this area. This strategy can not only extract high-accuracy matching from coarse baseline matching with low accuracy, but also preserves the true matching points to the greatest extent. The experimental results demonstrate the strong robustness of the FUGC algorithm on various real-world remote sensing images. The FUGC algorithm outperforms current state-of-the-art methods and meets the real-time requirement.


2020 ◽  
Vol 6 (1) ◽  
pp. 417-433
Author(s):  
Vasiliki Lysandrou ◽  
Athos Agapiou

AbstractThis study deals with the investigation of the Eastern necropolis of Nea Paphos in western Cyprus, employing archival and recent aerial photographs for the identification of surface/near-surface ancient architectural remains. The analysis of the primary archival aerial photograph employed for this study reveals the archaeological visibility of the site as it had been captured approximately 15 years before its rescue excavation in the 1980s. The outcomes from the enhancement and interpretation of the archival aerial photograph supplement known archaeological information of the area and elucidate the understanding of the spatial distribution of the tombs as well as the geographic extent of the necropolis.


2013 ◽  
Vol 22 (2) ◽  
pp. 102-111 ◽  
Author(s):  
Rachel Santiago ◽  
John M. Costello

Abstract AAC supports in the ICU/Acute Care vary by patient presentation. Our 20+ years of bedside service delivery reveals trends in patient needs for AAC across the continuum of care. We detail three phases of AAC assessment and intervention and the role of SLP in the assessment/feature matching process.


2021 ◽  
Vol 13 (1) ◽  
pp. 127
Author(s):  
Chia-Cheng Yeh ◽  
Yang-Lang Chang ◽  
Mohammad Alkhaleefah ◽  
Pai-Hui Hsu ◽  
Weiyong Eng ◽  
...  

Due to the large data volume, the UAV image stitching and matching suffers from high computational cost. The traditional feature extraction algorithms—such as Scale-Invariant Feature Transform (SIFT), Speeded Up Robust Features (SURF), and Oriented FAST Rotated BRIEF (ORB)—require heavy computation to extract and describe features in high-resolution UAV images. To overcome this issue, You Only Look Once version 3 (YOLOv3) combined with the traditional feature point matching algorithms is utilized to extract descriptive features from the drone dataset of residential areas for roof detection. Unlike the traditional feature extraction algorithms, YOLOv3 performs the feature extraction solely on the proposed candidate regions instead of the entire image, thus the complexity of the image matching is reduced significantly. Then, all the extracted features are fed into Structural Similarity Index Measure (SSIM) to identify the corresponding roof region pair between consecutive image sequences. In addition, the candidate corresponding roof pair by our architecture serves as the coarse matching region pair and limits the search range of features matching to only the detected roof region. This further improves the feature matching consistency and reduces the chances of wrong feature matching. Analytical results show that the proposed method is 13× faster than the traditional image matching methods with comparable performance.


2005 ◽  
Vol 33 (1) ◽  
pp. 2-17 ◽  
Author(s):  
D. Colbry ◽  
D. Cherba ◽  
J. Luchini

Abstract Commercial databases containing images of tire tread patterns are currently used by product designers, forensic specialists and product application personnel to identify whether a given tread pattern matches an existing tire. Currently, this pattern matching process is almost entirely manual, requiring visual searches of extensive libraries of tire tread patterns. Our work explores a first step toward automating this pattern matching process by building on feature analysis techniques from computer vision and image processing to develop a new method for extracting and classifying features from tire tread patterns and automatically locating candidate matches from a database of existing tread pattern images. Our method begins with a selection of tire tread images obtained from multiple sources (including manufacturers' literature, Web site images, and Tire Guides, Inc.), which are preprocessed and normalized using Two-Dimensional Fast Fourier Transforms (2D-FFT). The results of this preprocessing are feature-rich images that are further analyzed using feature extraction algorithms drawn from research in computer vision. A new, feature extraction algorithm is developed based on the geometry of the 2D-FFT images of the tire. The resulting FFT-based analysis allows independent classification of the tire images along two dimensions, specifically by separating “rib” and “lug” features of the tread pattern. Dimensionality of (0,0) indicates a smooth treaded tire with no pattern; dimensionality of (1,0) and (0,1) are purely rib and lug tires; and dimensionality of (1,1) is an all-season pattern. This analysis technique allows a candidate tire to be classified according to the features of its tread pattern, and other tires with similar features and tread pattern classifications can be automatically retrieved from the database.


Sign in / Sign up

Export Citation Format

Share Document