scholarly journals DESCENT TRAJECTORY RECOVERY OF CHANG’E-4 LANDER BASED ON DESCENT IMAGES

Author(s):  
W. Wan ◽  
Z. Liu ◽  
B. Liu ◽  
K. Di ◽  
J. Wang ◽  
...  

<p><strong>Abstract.</strong> Chang’e-4 lander, carrying Yutu-2 rover, was successfully landed on the far side of lunar surface in Von Kármán crater inside the South Pole-Aitken basin on January 3rd, 2019. The descent images, captured by the descent camera mounted on the lander, captured the sequential descent images and recorded the scene changes during the entry, descent and landing (EDL) process. This paper proposed a bundle adjustment based geometric processing method for descent and landing trajectory recovery using descent images. A frame camera based self-calibration model was introduced for high precision estimation of interior and exterior parameters of descent images simultaneously in a least squares manners. Evenly distributed GCPs were selected from the landing area in a digital orthophoto map generated from LROC NAC images and SLDEM2015. The experimental results demonstrated the effectiveness of the proposed method in Chang’e-4 descent trajectory recovery.</p>

2020 ◽  
Vol 48 (4) ◽  
pp. 987-1003
Author(s):  
Hans Georg Bock ◽  
Jürgen Gutekunst ◽  
Andreas Potschka ◽  
María Elena Suaréz Garcés

AbstractJust as the damped Newton method for the numerical solution of nonlinear algebraic problems can be interpreted as a forward Euler timestepping on the Newton flow equations, the damped Gauß–Newton method for nonlinear least squares problems is equivalent to forward Euler timestepping on the corresponding Gauß–Newton flow equations. We highlight the advantages of the Gauß–Newton flow and the Gauß–Newton method from a statistical and a numerical perspective in comparison with the Newton method, steepest descent, and the Levenberg–Marquardt method, which are respectively equivalent to Newton flow forward Euler, gradient flow forward Euler, and gradient flow backward Euler. We finally show an unconditional descent property for a generalized Gauß–Newton flow, which is linked to Krylov–Gauß–Newton methods for large-scale nonlinear least squares problems. We provide numerical results for large-scale problems: An academic generalized Rosenbrock function and a real-world bundle adjustment problem from 3D reconstruction based on 2D images.


2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Heba Shaaban ◽  
Ahmed Mostafa ◽  
Zahra Almatar ◽  
Reem Alsheef ◽  
Safia Alrubh

The quality of over-the-counter (OTC) pain relievers is important to ensure the safety of the marketed products in order to maintain the overall health care of patients. In this study, the multivariate curve resolution-alternating least squares (MCR-ALS) chemometric method was developed and validated for the resolution and quantification of the most commonly consumed OTC pain relievers (acetaminophen, acetylsalicylic acid, ibuprofen, naproxen, and caffeine) in commercial drug formulations. The analytical performance of the developed chemometric methods such as root mean square error of prediction, bias, standard error of prediction, relative error of prediction, and coefficients of determination was calculated for the developed model. The obtained results are linear with concentration in the range of 0.5–7 μg/mL for acetaminophen and 0.5–3.5 and 0.5–3 μg/mL for naproxen and caffeine, respectively, while the linearity ranges for acetyl salicylic acid and ibuprofen were 1–15 μg/mL. High values of coefficients of determination ≥0.9995 reflected high predictive ability of the developed model. Good recoveries ranging from 98.0% to 99.7% were obtained for all analytes with relative standard deviations (RSDs) not higher than 1.62%. The optimized method was successfully applied for the analysis of the studied drugs either in their single or coformulated pharmaceutical products without any separation step. The optimized method was also compared with a reported HPLC method using paired t-test and F-ratio at 95% confidence level, and the results showed no significant difference regarding accuracy and precision. The developed method is eco-friendly, simple, fast, and amenable for routine analysis. It could be used as a cost-effective alternative to chromatographic techniques for the analysis of the studied drugs in commercial formulations.


2019 ◽  
Vol 5 (1) ◽  
pp. 10 ◽  
Author(s):  
Ahmed Rady ◽  
Daniel Guyer ◽  
William Kirk ◽  
Irwin R Donis-González

The sprouting of potato tubers during storage is a significant problem that suppresses obtaining high quality seeds or fried products. In this study, the potential of fusing data obtained from visible (VIS)/near-infrared (NIR) spectroscopic and hyperspectral imaging systems was investigated, to improve the prediction of primordial leaf count as a significant sign for tubers sprouting. Electronic and lab measurements were conducted on whole tubers of Frito Lay 1879 (FL1879) and Russet Norkotah (R.Norkotah) potato cultivars. The interval partial least squares (IPLS) technique was adopted to extract the most effective wavelengths for both systems. Linear regression was utilized using partial least squares regression (PLSR), and the best calibration model was chosen using four-fold cross-validation. Then the prediction models were obtained using separate test data sets. Prediction results were enhanced compared with those obtained from individual systems’ models. The values of the correlation coefficient (the ratio between performance to deviation, or r(RPD)) were 0.95(3.01) and 0.9s6(3.55) for FL1879 and R.Norkotah, respectively, which represented a feasible improvement by 6.7%(35.6%) and 24.7%(136.7%) for FL1879 and R.Norkotah, respectively. The proposed study shows the possibility of building a rapid, noninvasive, and accurate system or device that requires minimal or no sample preparation to track the sprouting activity of stored potato tubers.


2020 ◽  
Vol 38 (No. 2) ◽  
pp. 131-136
Author(s):  
Wojciech Poćwiardowski ◽  
Joanna Szulc ◽  
Grażyna Gozdecka

The aim of the study was to elaborate a universal calibration for the near infrared (NIR) spectrophotometer to determine the moisture of various kinds of vegetable seeds. The research was conducted on the seeds of 5 types of vegetables – carrot, parsley, lettuce, radish and beetroot. For the spectra correlation with moisture values, the method of partial least squares regression (PLS) was used. The resulting qualitative indicators of a calibration model (R = 0.9968, Q = 0.8904) confirmed an excellent fit of the obtained calibration to the experimental data. As a result of the study, the possibilities of creating a calibration model for NIR spectrophotometer for non-destructive moisture analysis of various kinds of vegetable seeds was confirmed.<br /><br />


Sign in / Sign up

Export Citation Format

Share Document