scholarly journals A COMPARATIVE ANALYSIS OF FIVE CROPLAND DATASETS IN AFRICA

Author(s):  
Y. Wei ◽  
M. Lu ◽  
W. Wu

The food security, particularly in Africa, is a challenge to be resolved. The cropland area and spatial distribution obtained from remote sensing imagery are vital information. In this paper, according to cropland area and spatial location, we compare five global cropland datasets including CCI Land Cover, GlobCover, MODIS Collection 5, GlobeLand30 and Unified Cropland in circa 2010 of Africa in terms of cropland area and spatial location. The accuracy of cropland area calculated from five datasets was analyzed compared with statistic data. Based on validation samples, the accuracies of spatial location for the five cropland products were assessed by error matrix. The results show that GlobeLand30 has the best fitness with the statistics, followed by MODIS Collection 5 and Unified Cropland, GlobCover and CCI Land Cover have the lower accuracies. For the accuracy of spatial location of cropland, GlobeLand30 reaches the highest accuracy, followed by Unified Cropland, MODIS Collection 5 and GlobCover, CCI Land Cover has the lowest accuracy. The spatial location accuracy of five datasets in the Csa with suitable farming condition is generally higher than in the Bsk.

2020 ◽  
Vol 12 (5) ◽  
pp. 821 ◽  
Author(s):  
Shouyi Wang ◽  
Zhigang Xu ◽  
Chengming Zhang ◽  
Jinghan Zhang ◽  
Zhongshan Mu ◽  
...  

Improving the accuracy of edge pixel classification is crucial for extracting the winter wheat spatial distribution from remote sensing imagery using convolutional neural networks (CNNs). In this study, we proposed an approach using a partly connected conditional random field model (PCCRF) to refine the classification results of RefineNet, named RefineNet-PCCRF. First, we used an improved RefineNet model to initially segment remote sensing images, followed by obtaining the category probability vectors for each pixel and initial pixel-by-pixel classification result. Second, using manual labels as references, we performed a statistical analysis on the results to select pixels that required optimization. Third, based on prior knowledge, we redefined the pairwise potential energy, used a linear model to connect different levels of potential energies, and used only pixel pairs associated with the selected pixels to build the PCCRF. The trained PCCRF was then used to refine the initial pixel-by-pixel classification result. We used 37 Gaofen-2 images obtained from 2018 to 2019 of a representative Chinese winter wheat region (Tai’an City, China) to create the dataset, employed SegNet and RefineNet as the standard CNNs, and a fully connected conditional random field as the refinement methods to conduct comparison experiments. The RefineNet-PCCRF’s accuracy (94.51%), precision (92.39%), recall (90.98%), and F1-Score (91.68%) were clearly superior than the methods used for comparison. The results also show that the RefineNet-PCCRF improved the accuracy of large-scale winter wheat extraction results using remote sensing imagery.


Ever since the advent of modern geo information systems, tracking environmental changes due to natural and/or manmade causes with the aid of remote sensing applications has been an indispensable tool in numerous fields of geography, most of the earth science disciplines, defence, intelligence, commerce, economics and administrative planning. One among these applications is the construction of land use and land cover maps through image classification process. Land Use / Land Cover (LULC) information is a crucial input in designing efficient strategies for managing natural resources and monitoring environmental changes from time to time. The present study aims to know the extent of land cover and its usage in Davangere region of Karnataka, India. In this study, satellite image of Davangere during October-November 2018 was used for LULC supervised classification with the help of remote sensing tools like QGIS and Google Earth Engine. Six LULC classes were decided to locate on the map and the accuracy assessment was done using theoretical error matrix and Kappa coefficient. The key findings include LULC under Water bodies (8%), Built up Area (15.1%), Vegetation (9%), Horticulture (20.8%), Agriculture (39.3%) and Others (7%) with overall accuracy of 94.8% and Kappa coefficient of 0.866 indicating almost accurate goodness of classification


Sign in / Sign up

Export Citation Format

Share Document