scholarly journals THE LAND COVER CLASSIFICATION USING A FEATURE PYRAMID NETWORKS ARCHITECTURE FROM SATELLITE IMAGERY

Author(s):  
Q. Zhang ◽  
Y. Zhang ◽  
P. Yang ◽  
Y. Meng ◽  
S. Zhuo ◽  
...  

Abstract. Extracting land cover information from satellite imagery is of great importance for the task of automated monitoring in various remote sensing applications. Deep convolutional neural networks make this task more feasible, but they are limited by the small dataset of annotated images. In this paper, we present a fully convolutional networks architecture, FPN-VGG, that combines Feature Pyramid Networks and VGG. In order to accomplish the task of land cover classification, we create a land cover dataset of pixel-wise annotated images, and employ a transfer learning step and the variant dice loss function to promote the performance of FPN-VGG. The results indicate that FPN-VGG shows more competence for land cover classification comparing with other state-of-the-art fully convolutional networks. The transfer learning and dice loss function are beneficial to improve the performance of on the small and unbalanced dataset. Our best model on the dataset gets an overall accuracy of 82.9%, an average F1 score of 66.0% and an average IoU of 52.7%.

2020 ◽  
Vol 167 ◽  
pp. 385-395
Author(s):  
Nicholus Mboga ◽  
Tais Grippa ◽  
Stefanos Georganos ◽  
Sabine Vanhuysse ◽  
Benoît Smets ◽  
...  

2021 ◽  
Vol 10 (8) ◽  
pp. 523
Author(s):  
Nicholus Mboga ◽  
Stefano D’Aronco ◽  
Tais Grippa ◽  
Charlotte Pelletier ◽  
Stefanos Georganos ◽  
...  

Multitemporal environmental and urban studies are essential to guide policy making to ultimately improve human wellbeing in the Global South. Land-cover products derived from historical aerial orthomosaics acquired decades ago can provide important evidence to inform long-term studies. To reduce the manual labelling effort by human experts and to scale to large, meaningful regions, we investigate in this study how domain adaptation techniques and deep learning can help to efficiently map land cover in Central Africa. We propose and evaluate a methodology that is based on unsupervised adaptation to reduce the cost of generating reference data for several cities and across different dates. We present the first application of domain adaptation based on fully convolutional networks for semantic segmentation of a dataset of historical panchromatic orthomosaics for land-cover generation for two focus cities Goma-Gisenyi and Bukavu. Our experimental evaluation shows that the domain adaptation methods can reach an overall accuracy between 60% and 70% for different regions. If we add a small amount of labelled data from the target domain, too, further performance gains can be achieved.


2021 ◽  
Author(s):  
Geoffrey Bessardon ◽  
Emily Gleeson ◽  
Eoin Walsh

<p>An accurate representation of surface processes is essential for weather forecasting as it is where most of the thermal, turbulent and humidity exchanges occur. The Numerical Weather Prediction (NWP) system, to represent these exchanges, requires a land-cover classification map to calculate the surface parameters used in the turbulent, radiative, heat, and moisture fluxes estimations.</p><p>The land-cover classification map used in the HARMONIE-AROME configuration of the shared ALADIN-HIRLAM NWP system for operational weather forecasting is ECOCLIMAP. ECOCLIMAP-SG (ECO-SG), the latest version of ECOCLIMAP, was evaluated over Ireland to prepare ECO-SG implementation in HARMONIE-AROME. This evaluation suggested that sparse urban areas are underestimated and instead appear as vegetation areas in ECO-SG [1], with an over-classification of grassland in place of sparse urban areas and other vegetation covers (Met Éireann internal communication). Some limitations in the performance of the current HARMONIE-AROME configuration attributed to surface processes and physiography issues are well-known [2]. This motivated work at Met Éireann to evaluate solutions to improve the land-cover map in HARMONIE-AROME.</p><p>In terms of accuracy, resolution, and the future production of time-varying land-cover map, the use of a convolutional neural network (CNN) to create a land-cover map using Sentinel-2 satellite imagery [3] over Estonia [4] presented better potential outcomes than the use of local datasets [5]. Consequently, this method was tested over Ireland and proven to be more accurate than ECO-SG for representing CORINE Primary and Secondary labels and at a higher resolution [5]. This work is a continuity of [5] focusing on 1. increasing the number of labels, 2. optimising the training procedure, 3. expanding the method for application to other HIRLAM countries and 4. implementation of the new land-cover map in HARMONIE-AROME.</p><p> </p><p>[1] Bessardon, G., Gleeson, E., (2019) Using the best available physiography to improve weather forecasts for Ireland. In EMS Annual Meeting.Retrieved fromhttps://presentations.copernicus.org/EMS2019-702_presentation.pdf</p><p>[2] Bengtsson, L., Andrae, U., Aspelien, T., Batrak, Y., Calvo, J., de Rooy, W.,. . . Køltzow, M. Ø. (2017). The HARMONIE–AROME Model Configurationin the ALADIN–HIRLAM NWP System. Monthly Weather Review, 145(5),1919–1935.https://doi.org/10.1175/mwr-d-16-0417.1</p><p>[3] Bertini, F., Brand, O., Carlier, S., Del Bello, U., Drusch, M., Duca, R., Fernandez, V., Ferrario, C., Ferreira, M., Isola, C., Kirschner, V.,Laberinti, P., Lambert, M., Mandorlo, G., Marcos, P., Martimort, P., Moon, S., Oldeman,P., Palomba, M., and Pineiro, J.: Sentinel-2ESA’s Optical High-ResolutionMission for GMES Operational Services, ESA bulletin. Bulletin ASE. Euro-pean Space Agency, SP-1322,2012</p><p>[4] Ulmas, P. and Liiv, I. (2020). Segmentation of Satellite Imagery using U-Net Models for Land Cover Classification, pp. 1–11,http://arxiv.org/abs/2003.02899, 2020</p><p>[5] Walsh, E., Bessardon, G., Gleeson, E., and Ulmas, P. (2021). Using machine learning to produce a very high-resolution land-cover map for Ireland. Advances in Science and Research, (accepted for publication)</p>


2020 ◽  
Vol 10 (7) ◽  
pp. 2528 ◽  
Author(s):  
Lu Deng ◽  
Hong-Hu Chu ◽  
Peng Shi ◽  
Wei Wang ◽  
Xuan Kong

Cracks are often the most intuitive indicators for assessing the condition of in-service structures. Intelligent detection methods based on regular convolutional neural networks (CNNs) have been widely applied to the field of crack detection in recently years; however, these methods exhibit unsatisfying performance on the detection of out-of-plane cracks. To overcome this drawback, a new type of region-based CNN (R-CNN) crack detector with deformable modules is proposed in the present study. The core idea of the method is to replace the traditional regular convolution and pooling operation with a deformable convolution operation and a deformable pooling operation. The idea is implemented on three different regular detectors, namely the Faster R-CNN, region-based fully convolutional networks (R-FCN), and feature pyramid network (FPN)-based Faster R-CNN. To examine the advantages of the proposed method, the results obtained from the proposed detector and corresponding regular detectors are compared. The results show that the addition of deformable modules improves the mean average precisions (mAPs) achieved by the Faster R-CNN, R-FCN, and FPN-based Faster R-CNN for crack detection. More importantly, adding deformable modules enables these detectors to detect the out-of-plane cracks that are difficult for regular detectors to detect.


2010 ◽  
Vol 15 (12) ◽  
pp. 2355-2374 ◽  
Author(s):  
D. G. Stavrakoudis ◽  
J. B. Theocharis ◽  
G. C. Zalidis

Sign in / Sign up

Export Citation Format

Share Document