scholarly journals A MAN-PORTABLE, IMU-FREE MOBILE MAPPING SYSTEM

Author(s):  
A. Nüchter ◽  
D. Borrmann ◽  
P. Koch ◽  
M. Kühn ◽  
S. May

Mobile mapping systems are commonly mounted on cars, ships and robots. The data is directly geo-referenced using GPS data and expensive IMU (inertial measurement systems). Driven by the need for flexible, indoor mapping systems we present an inexpensive mobile mapping solution that can be mounted on a backpack. It combines a horizontally mounted 2D profiler with a constantly spinning 3D laser scanner. The initial system featuring a low-cost MEMS IMU was revealed and demonstrated at <i>MoLaS: Technology Workshop Mobile Laser Scanning at Fraunhofer IPM</i> in Freiburg in November 2014. In this paper, we present an IMU-free solution.

2011 ◽  
Vol 5 (1) ◽  
pp. 135-138 ◽  
Author(s):  
S. Kaasalainen ◽  
H. Kaartinen ◽  
A. Kukko ◽  
K. Anttila ◽  
A. Krooks

Abstract. We present a snowmobile-based mobile mapping system and its first application to snow cover roughness and change detection measurement. The ROAMER mobile mapping system, constructed at the Finnish Geodetic Institute, consists of the positioning and navigating systems, a terrestrial laser scanner, and the carrying platform (a snowmobile sledge in this application). We demonstrate the applicability of the instrument to snow cover roughness profiling and change detection by presenting preliminary results from a mobile laser scanning (MLS) campaign. The results show the potential of MLS for fast and efficient snow profiling from large areas in a millimetre scale.


Author(s):  
H. A. Lauterbach ◽  
D. Borrmann ◽  
A. Nüchter ◽  
A. P. Rossi ◽  
V. Unnithan ◽  
...  

<p><strong>Abstract.</strong> Planetary surfaces consist of rough terrain and cave-like environments. Future planetary exploration demands for accurate mapping. However, recent backpack mobile mapping systems are mostly tested in structured, indoor environments. This paper evaluates the use of a backpack mobile mapping system in a cave-like environment. The experiments demonstrate the abilities of an continuous-time optimization approach by mapping part of a lavatube of the La Corona volcano system on Lanzarote. We compare two strategies for trajectory estimation relying either on 2D or 3D laser scanners and show that a 3D laser scanner substantially improved the final results.</p>


2010 ◽  
Vol 4 (4) ◽  
pp. 2513-2522 ◽  
Author(s):  
S. Kaasalainen ◽  
H. Kaartinen ◽  
A. Kukko ◽  
K. Anttila ◽  
A. Krooks

Abstract. We present a snowmobile based mobile mapping system and its first application on snow cover roughness and change detection measurement. The ROAMER mobile mapping system, constructed at the Finnish Geodetic Institute, consists of the positioning and navigating systems, a terrestrial laser scanner, and the carrying platform (a snowmobile sledge in this application). We demonstrate the applicability of the instrument in snow cover roughness profiling and change detection by presenting preliminary results from a mobile laser scanning (MLS) campaign. The results show the potential of MLS for fast and efficient snow profiling from large areas in a millimetre scale.


2020 ◽  
Vol 9 (7) ◽  
pp. 455
Author(s):  
Mikko Maksimainen ◽  
Matti T. Vaaja ◽  
Matti Kurkela ◽  
Juho-Pekka Virtanen ◽  
Arttu Julin ◽  
...  

Roadside vegetation can affect the performance of installed road lighting. We demonstrate a workflow in which a car-mounted measurement system is used to assess the light-obstructing effect of roadside vegetation. The mobile mapping system (MMS) includes a panoramic camera system, laser scanner, inertial measurement unit, and satellite positioning system. The workflow and the measurement system were applied to a road section of Munkkiniemenranta, Helsinki, Finland, in 2015 and 2019. The relative luminance distribution on a road surface and the obstructing vegetation were measured before and after roadside vegetation pruning applying a luminance-calibrated mobile mapping system. The difference between the two measurements is presented, and the opportunities provided by the mobile 3D luminance measurement system are discussed.


Author(s):  
A. Al-Hamad ◽  
A. Moussa ◽  
N. El-Sheimy

The last two decades have witnessed a huge growth in the demand for geo-spatial data. This demand has encouraged researchers around the world to develop new algorithms and design new mapping systems in order to obtain reliable sources for geo-spatial data. Mobile Mapping Systems (MMS) are one of the main sources for mapping and Geographic Information Systems (GIS) data. MMS integrate various remote sensing sensors, such as cameras and LiDAR, along with navigation sensors to provide the 3D coordinates of points of interest from moving platform (e.g. cars, air planes, etc.). Although MMS can provide accurate mapping solution for different GIS applications, the cost of these systems is not affordable for many users and only large scale companies and institutions can benefits from MMS systems. <br><br> The main objective of this paper is to propose a new low cost MMS with reasonable accuracy using the available sensors in smartphones and its video camera. Using the smartphone video camera, instead of capturing individual images, makes the system easier to be used by non-professional users since the system will automatically extract the highly overlapping frames out of the video without the user intervention. Results of the proposed system are presented which demonstrate the effect of the number of the used images in mapping solution. In addition, the accuracy of the mapping results obtained from capturing a video is compared to the same results obtained from using separate captured images instead of video.


2021 ◽  
Vol 1 (1) ◽  
pp. 28-33
Author(s):  
Bashar Alsadik

Mapping systems using multi-beam LiDARs are widely used nowadays for different geospatial applications graduating from indoor projects to outdoor city-wide projects. These mobile mapping systems can be either ground-based or aerial-based systems and are mostly equipped with inertial navigation systems INS. The Velodyne HDL-32 LiDAR is a well-known 360° spinning multi-beam laser scanner that is widely used in outdoor and indoor mobile mapping systems. The performance of such LiDARs is an ongoing research topic which is quite important for the quality assurance and quality control topic. The performance of this LiDAR type is correlated to many factors either related to the device itself or the design of the mobile mapping system. Regarding design, most of the mapping systems are equipped with a single Velodyne HDL32 in a specific orientation angle which is different among the mapping systems manufacturers. The LiDAR orientation angle has a significant impact on the performance in terms of the density and coverage of the produced point clouds. Furthermore, during the lifetime of this multi-beam LiDAR, one or more beams may be defected and then either continue the production or returned to the manufacturer to be fixed which then cost time and money. In this paper, the design impact analysis of a mobile laser scanning (MLS) system equipped with a single Velodyne HDL-32E will be clarified and a clear relationship is given between the orientation angle of the LiDAR and the output density of points. The ideal angular orientation of a single Velodyne HDL-32E is found to be at 35° in a mobile mapping system. Furthermore, we investigated the degradation of points density when one of the 32 beams is defected and quantified the density loss percentage and to the best of our knowledge, this is not presented in literature before. It is found that a maximum of about 8% point density loss occurs on the ground and 4% on the facades when having a defected beam of the Velodyne HDL-32E.   


Proceedings ◽  
2019 ◽  
Vol 19 (1) ◽  
pp. 9
Author(s):  
Pardo ◽  
Abadía ◽  
Sternberg

The research project “Development of a Mobile Mapping System for multi-purpose applications composed of a low-cost inertial measuring unit, a GNSS receiver and a close-range LIDAR” consists on considerations about the design of an aerial and a sensor platform, which can also be used separately. The aim of the project is the development of a measurement platform, which performs a direct scan of the Earth’s surface by means of measurements with a laser scanner supported by several sensors to determine their position. The geo-referencing of the data will initially take place in post-processing.


Author(s):  
C. Acevedo Pardo ◽  
M. Farjas Abadía ◽  
H. Sternberg

The research project with the working title "Design and development of a low-cost modular Aerial Mobile Mapping System" was formed during the last year as the result from numerous discussions and considerations with colleagues from the HafenCity University Hamburg, Department Geomatics. The aim of the project is to design a sensor platform which can be embedded preferentially on an UAV, but also can be integrated on any adaptable vehicle. The system should perform a direct scanning of surfaces with a laser scanner and supported through sensors for determining the position and attitude of the platform. The modular design allows his extension with other sensors such as multispectral cameras, digital cameras or multiple cameras systems.


Sign in / Sign up

Export Citation Format

Share Document