scholarly journals Augmented reality system using lidar point cloud data for displaying dimensional information of objects on mobile phones

Author(s):  
S. Gupta ◽  
B. Lohani

Mobile augmented reality system is the next generation technology to visualise 3D real world intelligently. The technology is expanding at a fast pace to upgrade the status of a smart phone to an intelligent device. The research problem identified and presented in the current work is to view actual dimensions of various objects that are captured by a smart phone in real time. The methodology proposed first establishes correspondence between LiDAR point cloud, that are stored in a server, and the image t hat is captured by a mobile. This correspondence is established using the exterior and interior orientation parameters of the mobile camera and the coordinates of LiDAR data points which lie in the viewshed of the mobile camera. A pseudo intensity image is generated using LiDAR points and their intensity. Mobile image and pseudo intensity image are then registered using image registration method SIFT thereby generating a pipeline to locate a point in point cloud corresponding to a point (pixel) on the mobile image. The second part of the method uses point cloud data for computing dimensional information corresponding to the pairs of points selected on mobile image and fetch the dimensions on top of the image. This paper describes all steps of the proposed method. The paper uses an experimental setup to mimic the mobile phone and server system and presents some initial but encouraging results

Symmetry ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1325 ◽  
Author(s):  
Kumar ◽  
Patil ◽  
Kang ◽  
Chai

Augmented reality (AR) systems are becoming next-generation technologies to intelligently visualize the real world in 3D. This research proposes a sensor fusion based pipeline inspection and retrofitting for the AR system, which can be used in pipeline inspection and retrofitting processes in industrial plants. The proposed methodology utilizes a prebuilt 3D point cloud data of the environment, real-time Light Detection and Ranging (LiDAR) scan and image sequence from the camera. First, we estimate the current pose of the sensors platform by matching the LiDAR scan and the prebuilt point cloud data from the current pose prebuilt point cloud data augmented on to the camera image by utilizing the LiDAR and camera calibration parameters. Next, based on the user selection in the augmented view, geometric parameters of a pipe are estimated. In addition to pipe parameter estimation, retrofitting in the existing plant using augmented scene are illustrated. Finally, step-by-step procedure of the proposed method was experimentally verified at a water treatment plant. Result shows that the integration of AR with building information modelling (BIM) greatly benefits the post-occupancy evaluation process or pre-retrofitting and renovation process for identifying, evaluating, and updating the geometric specifications of a construction environment.


Author(s):  
Jiayong Yu ◽  
Longchen Ma ◽  
Maoyi Tian, ◽  
Xiushan Lu

The unmanned aerial vehicle (UAV)-mounted mobile LiDAR system (ULS) is widely used for geomatics owing to its efficient data acquisition and convenient operation. However, due to limited carrying capacity of a UAV, sensors integrated in the ULS should be small and lightweight, which results in decrease in the density of the collected scanning points. This affects registration between image data and point cloud data. To address this issue, the authors propose a method for registering and fusing ULS sequence images and laser point clouds, wherein they convert the problem of registering point cloud data and image data into a problem of matching feature points between the two images. First, a point cloud is selected to produce an intensity image. Subsequently, the corresponding feature points of the intensity image and the optical image are matched, and exterior orientation parameters are solved using a collinear equation based on image position and orientation. Finally, the sequence images are fused with the laser point cloud, based on the Global Navigation Satellite System (GNSS) time index of the optical image, to generate a true color point cloud. The experimental results show the higher registration accuracy and fusion speed of the proposed method, thereby demonstrating its accuracy and effectiveness.


2011 ◽  
Vol 299-300 ◽  
pp. 1091-1094 ◽  
Author(s):  
Jiang Zhu ◽  
Yuichi Takekuma ◽  
Tomohisa Tanaka ◽  
Yoshio Saito

Currently, design and processing of complicated model are enabled by the progress of the CAD/CAM system. In shape measurement, high precision measurement is performed using CMM. In order to evaluate the machined part, the designed model made by CAD system the point cloud data provided by the measurement system are analyzed and compared. Usually, the designed CAD model and measured point cloud data are made in the different coordinate systems, it is necessary to register those models in the same coordinate system for evaluation. In this research, a 3D model registration method based on feature extraction and iterative closest point (ICP) algorithm is proposed. It could efficiently and accurately register two models in different coordinate systems, and effectively avoid the problem of localized solution.


2021 ◽  
Vol 65 (1) ◽  
pp. 10501-1-10501-9
Author(s):  
Jiayong Yu ◽  
Longchen Ma ◽  
Maoyi Tian ◽  
Xiushan Lu

Abstract The unmanned aerial vehicle (UAV)-mounted mobile LiDAR system (ULS) is widely used for geomatics owing to its efficient data acquisition and convenient operation. However, due to limited carrying capacity of a UAV, sensors integrated in the ULS should be small and lightweight, which results in decrease in the density of the collected scanning points. This affects registration between image data and point cloud data. To address this issue, the authors propose a method for registering and fusing ULS sequence images and laser point clouds, wherein they convert the problem of registering point cloud data and image data into a problem of matching feature points between the two images. First, a point cloud is selected to produce an intensity image. Subsequently, the corresponding feature points of the intensity image and the optical image are matched, and exterior orientation parameters are solved using a collinear equation based on image position and orientation. Finally, the sequence images are fused with the laser point cloud, based on the Global Navigation Satellite System (GNSS) time index of the optical image, to generate a true color point cloud. The experimental results show the higher registration accuracy and fusion speed of the proposed method, thereby demonstrating its accuracy and effectiveness.


Sensors ◽  
2019 ◽  
Vol 19 (18) ◽  
pp. 3908 ◽  
Author(s):  
Pavan Kumar B. N. ◽  
Ashok Kumar Patil ◽  
Chethana B. ◽  
Young Ho Chai

Acquisition of 3D point cloud data (PCD) using a laser scanner and aligning it with a video frame is a new approach that is efficient for retrofitting comprehensive objects in heavy pipeline industrial facilities. This work contributes a generic framework for interactive retrofitting in a virtual environment and an unmanned aerial vehicle (UAV)-based sensory setup design to acquire PCD. The framework adopts a 4-in-1 alignment using a point cloud registration algorithm for a pre-processed PCD alignment with the partial PCD, and frame-by-frame registration method for video alignment. This work also proposes a virtual interactive retrofitting framework that uses pre-defined 3D computer-aided design models (CAD) with a customized graphical user interface (GUI) and visualization of a 4-in-1 aligned video scene from a UAV camera in a desktop environment. Trials were carried out using the proposed framework in a real environment at a water treatment facility. A qualitative and quantitative study was conducted to evaluate the performance of the proposed generic framework from participants by adopting the appropriate questionnaire and retrofitting task-oriented experiment. Overall, it was found that the proposed framework could be a solution for interactive 3D CAD model retrofitting on a combination of UAV sensory setup-acquired PCD and real-time video from the camera in heavy industrial facilities.


2013 ◽  
Vol 368-370 ◽  
pp. 1864-1867
Author(s):  
Zuo Wei Huang ◽  
Shu He ◽  
Luo Qiu

In order to improve the efficiency of 3D buildings reconstruction, based on the previous related advance technology and theory, It put forward a novel method for detecting building contours in irregularly triangulated point cloud data, On the condition that image resolution and density of the point cloud scale it adopt a new registration method, improve the LIDAR point cloud data with registration accuracy on remote sensing images. which make building reconstruction from these data sources feasible and reliable. It is also meaningful for virtual reality, urban planning, and simulation of disaster scenarios etc. finally the experimental results show that the proposed method can obtain more accurate results in comparison with the previous method.


Electronics ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 836 ◽  
Author(s):  
Young-Hoon Jin ◽  
In-Tae Hwang ◽  
Won-Hyung Lee

Augmented reality (AR) is a useful visualization technology that displays information by adding virtual images to the real world. In AR systems that require three-dimensional information, point cloud data is easy to use after real-time acquisition, however, it is difficult to measure and visualize real-time objects due to the large amount of data and a matching process. In this paper we explored a method of estimating pipes from point cloud data and visualizing them in real-time through augmented reality devices. In general, pipe estimation in a point cloud uses a Hough transform and is performed through a preprocessing process, such as noise filtering, normal estimation, or segmentation. However, there is a disadvantage in that the execution time is slow due to a large amount of computation. Therefore, for the real-time visualization in augmented reality devices, the fast cylinder matching method using random sample consensus (RANSAC) is required. In this paper, we proposed parallel processing, multiple frames, adjustable scale, and error correction for real-time visualization. The real-time visualization method through the augmented reality device obtained a depth image from the sensor and configured a uniform point cloud using a voxel grid algorithm. The constructed data was analyzed according to the fast cylinder matching method using RANSAC. The real-time visualization method through augmented reality devices is expected to be used to identify problems, such as the sagging of pipes, through real-time measurements at plant sites due to the spread of various AR devices.


2014 ◽  
Vol 1 (3) ◽  
pp. 202-212 ◽  
Author(s):  
Jingyu Sun ◽  
Kazuo Hiekata ◽  
Hiroyuki Yamato ◽  
Norito Nakagaki ◽  
Akiyoshi Sugawara

Abstract To survive in the current shipbuilding industry, it is of vital importance for shipyards to have the ship components' accuracy evaluated efficiently during most of the manufacturing steps. Evaluating components' accuracy by comparing each component's point cloud data scanned by laser scanners and the ship's design data formatted in CAD cannot be processed efficiently when (1) extract components from point cloud data include irregular obstacles endogenously, or when (2) registration of the two data sets have no clear direction setting. This paper presents reformative point cloud data processing methods to solve these problems. K-d tree construction of the point cloud data fastens a neighbor searching of each point. Region growing method performed on the neighbor points of the seed point extracts the continuous part of the component, while curved surface fitting and B-spline curved line fitting at the edge of the continuous part recognize the neighbor domains of the same component divided by obstacles' shadows. The ICP (Iterative Closest Point) algorithm conducts a registration of the two sets of data after the proper registration's direction is decided by principal component analysis. By experiments conducted at the shipyard, 200 curved shell plates are extracted from the scanned point cloud data, and registrations are conducted between them and the designed CAD data using the proposed methods for an accuracy evaluation. Results show that the methods proposed in this paper support the accuracy evaluation targeted point cloud data processing efficiently in practice.


Sign in / Sign up

Export Citation Format

Share Document