scholarly journals A NEW FRAMEWORK FOR OBJECT-BASED IMAGE ANALYSIS BASED ON SEGMENTATION SCALE SPACE AND RANDOM FOREST CLASSIFIER

Author(s):  
A. Hadavand ◽  
M. Saadatseresht ◽  
S. Homayouni

In this paper a new object-based framework is developed for automate scale selection in image segmentation. The quality of image objects have an important impact on further analyses. Due to the strong dependency of segmentation results to the scale parameter, choosing the best value for this parameter, for each class, becomes a main challenge in object-based image analysis. We propose a new framework which employs pixel-based land cover map to estimate the initial scale dedicated to each class. These scales are used to build segmentation scale space (SSS), a hierarchy of image objects. Optimization of SSS, respect to NDVI and DSM values in each super object is used to get the best scale in local regions of image scene. Optimized SSS segmentations are finally classified to produce the final land cover map. Very high resolution aerial image and digital surface model provided by ISPRS 2D semantic labelling dataset is used in our experiments. The result of our proposed method is comparable to those of ESP tool, a well-known method to estimate the scale of segmentation, and marginally improved the overall accuracy of classification from 79% to 80%.

Water ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 1133 ◽  
Author(s):  
Mark Randall ◽  
Rasmus Fensholt ◽  
Yongyong Zhang ◽  
Marina Bergen Jensen

China’s Sponge City initiative will involve widespread installation of new stormwater infrastructure including green roofs, permeable pavements and rain gardens in at least 30 cities. Hydrologic modelling can support the planning of Sponge Cities at the catchment scale, however, highly detailed spatial data for model input can be challenging to compile from the various authorities, or, if available, may not be sufficiently detailed or updated. Remote sensing methods show great promise for mitigating this challenge due to their ability to efficiently classify satellite images into categories relevant to a specific application. In this study Geographic Object Based Image Analysis (GEOBIA) was applied to WorldView-3 satellite imagery (2017) to create a detailed land cover map of an urban catchment area in Beijing. While land cover classification results based on a Bayesian machine learning classifier alone provided an overall land cover classification accuracy of 63%, the subsequent inclusion of a series of refining rules in combination with supplementary data (including elevation and parcel delineations), yielded the significantly improved overall accuracy of 76%. Results of the land cover classification highlight the limitations of automated classification based on satellite imagery alone and the value of supplementary data and additional rules to refine classification results. Catchment scale hydrologic modelling based on the generated land cover results indicated that 61 to 82% of rainfall volume could be captured for a range of 24 h design storms under varying degrees of Sponge City implementation.


2020 ◽  
Vol 12 (12) ◽  
pp. 2012 ◽  
Author(s):  
Maja Kucharczyk ◽  
Geoffrey J. Hay ◽  
Salar Ghaffarian ◽  
Chris H. Hugenholtz

Geographic object-based image analysis (GEOBIA) is a remote sensing image analysis paradigm that defines and examines image-objects: groups of neighboring pixels that represent real-world geographic objects. Recent reviews have examined methodological considerations and highlighted how GEOBIA improves upon the 30+ year pixel-based approach, particularly for H-resolution imagery. However, the literature also exposes an opportunity to improve guidance on the application of GEOBIA for novice practitioners. In this paper, we describe the theoretical foundations of GEOBIA and provide a comprehensive overview of the methodological workflow, including: (i) software-specific approaches (open-source and commercial); (ii) best practices informed by research; and (iii) the current status of methodological research. Building on this foundation, we then review recent research on the convergence of GEOBIA with deep convolutional neural networks, which we suggest is a new form of GEOBIA. Specifically, we discuss general integrative approaches and offer recommendations for future research. Overall, this paper describes the past, present, and anticipated future of GEOBIA in a novice-accessible format, while providing innovation and depth to experienced practitioners.


2017 ◽  
Vol 38 (8-10) ◽  
pp. 2535-2556 ◽  
Author(s):  
Bahareh Kalantar ◽  
Shattri Bin Mansor ◽  
Maher Ibrahim Sameen ◽  
Biswajeet Pradhan ◽  
Helmi Z. M. Shafri

Author(s):  
H. Y. Gu ◽  
H. T. Li ◽  
L. Yan ◽  
X. J. Lu

GEOBIA (Geographic Object-Based Image Analysis) is not only a hot topic of current remote sensing and geographical research. It is believed to be a paradigm in remote sensing and GIScience. The lack of a systematic approach designed to conceptualize and formalize the class definitions makes GEOBIA a highly subjective and difficult method to reproduce. This paper aims to put forward a framework for GEOBIA based on geographic ontology theory, which could implement "Geographic entities - Image objects - Geographic objects" true reappearance. It consists of three steps, first, geographical entities are described by geographic ontology, second, semantic network model is built based on OWL(ontology web language), at last, geographical objects are classified with decision rule or other classifiers. A case study of farmland ontology was conducted for describing the framework. The strength of this framework is that it provides interpretation strategies and global framework for GEOBIA with the property of objective, overall, universal, universality, etc., which avoids inconsistencies caused by different experts’ experience and provides an objective model for mage analysis.


AGRIFOR ◽  
2018 ◽  
Vol 17 (1) ◽  
pp. 1
Author(s):  
Agus Sofyan

Remote sensing can be done visually and digitally. one of the advantages of airborne photography data generated by drone (phantom-3) compared to satellite imagery with optical sensitivity is its ability to obtain cloud-free images and freedom of recording time and the displayed area shows clearly defined objects corresponding to land cover. characteristics. To limit the object-based area of this research method applied is Object Based Image Analysis (OBIA).This study aims to classify land cover using highly resolved aerial photography with the help of Object Based Image Analysis (OBIA) technique and calculate the accuracy and accuracy, land cover classification by using Objeck Based Image (OBIA) analysis through examination of field conditions.classifying land cover, the classification includes shrubs, young shrubs, plantations (oil palms), shrubs, mines, open land, roads and water bodies with Accuracy of Overcome 0.86.


Sign in / Sign up

Export Citation Format

Share Document