scholarly journals Seasonal variation of land cover classification accuracy of Landsat 8 images in Burkina Faso

Author(s):  
J. Liu ◽  
J. Heiskanen ◽  
E. Aynekulu ◽  
P. K. E. Pellikka

In the seasonal tropics, vegetation shows large reflectance variation because of phenology, which complicates land cover change monitoring. Ideally, multi-temporal images for change monitoring should be from the same season, but availability of cloud-free images is limited in wet season in comparison to dry season. Our aim was to investigate how land cover classification accuracy depends on the season in southern Burkina Faso by analyzing 14 Landsat 8 OLI images from April 2013 to April 2014. Because all the images were acquired within one year, we assumed that most of the observed variation between the images was due to phenology. All the images were cloud masked and atmospherically corrected. Field data was collected from 160 field plots located within a 10 km × 10 km study area between December 2013 and February 2014. The plots were classified to closed forest, open forest and cropland, and used as training and validation data. Random forest classifier was employed for classifications. According to the results, there is a tendency for higher classification accuracy towards the dry season. The highest classification accuracy was provided by an image from December, which corresponds to the dry season and minimum NDVI period. In contrast, an image from October, which corresponds to the wet season and maximum NDVI period provided the lowest accuracy. Furthermore, the multi-temporal classification based on dry and wet season images had higher accuracy than single image classifications, but the improvement was small because seasonal changes affect similarly to the different land cover classes.

2019 ◽  
Vol 11 (24) ◽  
pp. 3000 ◽  
Author(s):  
Francisco Alonso-Sarria ◽  
Carmen Valdivieso-Ros ◽  
Francisco Gomariz-Castillo

Supervised land cover classification from remote sensing imagery is based on gathering a set of training areas to characterise each of the classes and to train a predictive model that is then used to predict land cover in the rest of the image. This procedure relies mainly on the assumptions of statistical separability of the classes and the representativeness of the training areas. This paper uses isolation forests, a type of random tree ensembles, to analyse both assumptions and to easily correct lack of representativeness by digitising new training areas where needed to improve the classification of a Landsat-8 set of images with Random Forest. The results show that the improved set of training areas after the isolation forest analysis is more representative of the whole image and increases classification accuracy. Besides, the distribution of isolation values can be useful to estimate class separability. A class separability parameter that summarises such distributions is proposed. This parameter is more correlated to omission and commission errors than other separability measures such as the Jeffries–Matusita distance.


2020 ◽  
Vol 12 (6) ◽  
pp. 954
Author(s):  
Reza Khatami ◽  
Jane Southworth ◽  
Carly Muir ◽  
Trevor Caughlin ◽  
Alemayehu N. Ayana ◽  
...  

Knowledge of land cover and land use nationally is a prerequisite of many studies on drivers of land change, impacts on climate, carbon storage and other ecosystem services, and allows for sufficient planning and management. Despite this, many regions globally do not have accurate and consistent coverage at the national scale. This is certainly true for Ethiopia. Large-area land-cover characterization (LALCC), at a national scale is thus an essential first step in many studies of land-cover change, and yet is itself problematic. Such LALCC based on remote-sensing image classification is associated with a spectrum of technical challenges such as data availability, radiometric inconsistencies within/between images, and big data processing. Radiometric inconsistencies could be exacerbated for areas, such as Ethiopia, with a high frequency of cloud cover, diverse ecosystem and climate patterns, and large variations in elevation and topography. Obtaining explanatory variables that are more robust can improve classification accuracy. To create a base map for the future study of large-scale agricultural land transactions, we produced a recent land-cover map of Ethiopia. Of key importance was the creation of a methodology that was accurate and repeatable and, as such, could be used to create earlier, comparable land-cover classifications in the future for the same region. We examined the effects of band normalization and different time-series image compositing methods on classification accuracy. Both top of atmosphere and surface reflectance products from the Landsat 8 Operational Land Imager (OLI) were tested for single-time classification independently, where the latter resulted in 1.1% greater classification overall accuracy. Substitution of the original spectral bands with normalized difference spectral indices resulted in an additional improvement of 1.0% in overall accuracy. Three approaches for multi-temporal image compositing, using Landsat 8 OLI and Moderate Resolution Imaging Spectroradiometer (MODIS) data, were tested including sequential compositing, i.e., per-pixel summary measures based on predefined periods, probability density function compositing, i.e., per-pixel characterization of distribution of spectral values, and per-pixel sinusoidal models. Multi-temporal composites improved classification overall accuracy up to 4.1%, with respect to single-time classification with an advantage of the Landsat OLI-driven composites over MODIS-driven composites. Additionally, night-time light and elevation data were used to improve the classification. The elevation data and its derivatives improved classification accuracy by 1.7%. The night-time light data improve producer’s accuracy of the Urban/Built class with the cost of decreasing its user’s accuracy. Results from this research can aid map producers with decisions related to operational large-area land-cover mapping, especially with selecting input explanatory variables and multi-temporal image compositing, to allow for the creation of accurate and repeatable national-level land-cover products in a timely fashion.


2019 ◽  
Vol 11 (16) ◽  
pp. 1927 ◽  
Author(s):  
Xiaoxue Wang ◽  
Xiangwei Gao ◽  
Yuanzhi Zhang ◽  
Xianyun Fei ◽  
Zhou Chen ◽  
...  

Wetlands are one of the world’s most important ecosystems, playing an important role in regulating climate and protecting the environment. However, human activities have changed the land cover of wetlands, leading to direct destruction of the environment. If wetlands are to be protected, their land cover must be classified and changes to it monitored using remote sensing technology. The random forest (RF) machine learning algorithm, which offers clear advantages (e.g., processing feature data without feature selection and preferable classification result) for high spatial image classification, has been used in many study areas. In this research, to verify the effectiveness of this algorithm for remote sensing image classification of coastal wetlands, two types of spatial resolution images of the Linhong Estuary wetland in Lianyungang—Worldview-2 and Landsat-8 images—were used for land cover classification using the RF method. To demonstrate the preferable classification accuracy of the RF algorithm, the support vector machine (SVM) and k-nearest neighbor (k-NN) methods were also used to classify the same area of land cover for comparison with the results of RF classification. The study results showed that (1) the overall accuracy of the RF method reached 91.86%, higher than the SVM and k-NN methods by 4.68% and 4.72%, respectively, for Worldview-2 images; (2) at the same time, the classification accuracies of RF, SVM, and k-NN were 86.61%, 79.96%, and 77.23%, respectively, for Landsat-8 images; (3) for some land cover types having only a small number of samples, the RF algorithm also achieved better classification results using Worldview-2 and Landsat-8 images, and (4) the addition texture features could improve the classification accuracy of the RF method when using Worldview-2 images. Research indicated that high-resolution remote sensing images are more suitable for small-scale land cover classification image and that the RF algorithm can provide better classification accuracy and is more suitable for coastal wetland classification than the SVM and k-NN algorithms are.


Author(s):  
C.-S. Tao ◽  
S.-W. Chen ◽  
Y.-Z. Li ◽  
S.-P. Xiao

Land cover classification is an important application for polarimetric synthetic aperture radar (PolSAR) data utilization. Rollinvariant polarimetric features such as <i>H&amp;thinsp;/&amp;thinsp;Ani&amp;thinsp;/&amp;thinsp;<span style="text-decoration: overline">α</span>&amp;thinsp;/&amp;thinsp;Span</i> are commonly adopted in PolSAR land cover classification. However, target orientation diversity effect makes PolSAR images understanding and interpretation difficult. Only using the roll-invariant polarimetric features may introduce ambiguity in the interpretation of targets’ scattering mechanisms and limit the followed classification accuracy. To address this problem, this work firstly focuses on hidden polarimetric feature mining in the rotation domain along the radar line of sight using the recently reported uniform polarimetric matrix rotation theory and the visualization and characterization tool of polarimetric coherence pattern. The former rotates the acquired polarimetric matrix along the radar line of sight and fully describes the rotation characteristics of each entry of the matrix. Sets of new polarimetric features are derived to describe the hidden scattering information of the target in the rotation domain. The latter extends the traditional polarimetric coherence at a given rotation angle to the rotation domain for complete interpretation. A visualization and characterization tool is established to derive new polarimetric features for hidden information exploration. Then, a classification scheme is developed combing both the selected new hidden polarimetric features in rotation domain and the commonly used roll-invariant polarimetric features with a support vector machine (SVM) classifier. Comparison experiments based on AIRSAR and multi-temporal UAVSAR data demonstrate that compared with the conventional classification scheme which only uses the roll-invariant polarimetric features, the proposed classification scheme achieves both higher classification accuracy and better robustness. For AIRSAR data, the overall classification accuracy with the proposed classification scheme is 94.91&amp;thinsp;%, while that with the conventional classification scheme is 93.70&amp;thinsp;%. Moreover, for multi-temporal UAVSAR data, the averaged overall classification accuracy with the proposed classification scheme is up to 97.08&amp;thinsp;%, which is much higher than the 87.79&amp;thinsp;% from the conventional classification scheme. Furthermore, for multitemporal PolSAR data, the proposed classification scheme can achieve better robustness. The comparison studies also clearly demonstrate that mining and utilization of hidden polarimetric features and information in the rotation domain can gain the added benefits for PolSAR land cover classification and provide a new vision for PolSAR image interpretation and application.


Sign in / Sign up

Export Citation Format

Share Document