scholarly journals Road Detection from Remote Sensing Images using Impervious Surface Characteristics: Review and Implication

Author(s):  
P. P. Singh ◽  
R. D. Garg

The extraction of road network is an emerging area in information extraction from high-resolution satellite images (HRSI). It is also an interesting field that incorporates various tactics to achieve road network. The process of road detection from remote sensing images is quite complex, due to the presence of various noises. These noises could be the vehicles, crossing lines and toll bridges. Few small and large false road segments interrupt the extraction of road segments that happens due to the similar spectral behavior in heterogeneous objects. To achieve a better level of accuracy, numerous factors play their important role, such as spectral data of satellite sensor and the information related to land surface area. Therefore the interpretation varies on processing of images with different heuristic parameters. These parameters have tuned according to the road characteristics of the terrain in satellite images. There are several approaches proposed and implemented to extract the roads from HRSI comprising a single or hybrid method. This kind of hybrid approach has also improved the accuracy of road extraction in comparison to a single approach. Some characteristics related to impervious and non-impervious surfaces are used as salient features that help to improve the extraction of road area only in the correct manner. These characteristics also used to utilize the spatial, spectral and texture features to increase the accuracy of classified results. Therefore, aforesaid characteristics have been utilized in combination of road spectral properties to extract road network only with improved accuracy. This evaluated road network is quite accurate with the help of these defined methodologies.

Author(s):  
P. Yadav ◽  
S. Agrawal

<p><strong>Abstract.</strong> As the high resolution satellite images have become easily available, this has motivated researchers for searching advanced methods for object detection and extraction from satellite images. Roads are important curvilinear object as they are a used in urban planning, emergency response, route planning etc. Automatic road detection from satellite images has now become an important topic in photogrammetry with the advances in remote sensing technology. In this paper, a method for road detection and extraction of satellite images has been introduced. This method uses the concept of histogram equalization, Otsu's method of image segmentation, connected component analysis and morphological operations. The aim of this paper is to discover the potential of high resolution satellite images for detecting and extracting the road network in a robust manner.</p>


2017 ◽  
Vol 49 (2) ◽  
pp. 204 ◽  
Author(s):  
Sukendra - Martha

This article discusses a comparison of various numbers of islands in Indonesia; and it addresses a valid method of accounting or enumerating numbers of islands in Indonesia. Methodology used is an analysis to compare the different number of islands from various sources.  First, some numbers of  Indonesian islands were derived from: (i) Centre for Survey and Mapping- Indonesian Arm Forces (Pussurta ABRI) recorded as 17,508 islands; (ii) Agency for Geospatial Information (BIG) previously known as National Coordinating Agency for Surveys and Mapping (Bakosurtanal) as national mapping authority reported with 17,506 islands (after loosing islands of  Sipadan and Ligitan); (iii) Ministry of Internal Affair published 17,504 islands. Many parties have referred the number of 17,504 islands even though it has not yet been supported by back-up documents; (iv) Hidrographic Office of Indonesian Navy has released with numbers of 17,499; (v) Other sources indicated different numbers of islands, and indeed will imply to people confusion. In the other hand, the number of 13,466 named islands has a strong document (Gazetteer). Second, enumerating the total number of islands in Indonesia can be proposed by three ways: (i) island census through toponimic survey, (ii) using map, and (iii) applying remote sensing images. Third, the procedures of searching valid result in number of islands is by remote sensing approach - high resolution satellite images. The result of this work implies the needs of one geospatial data source (including total numbers of islands) in the form of ‘One Map Policy’ that will impact in the improvement of  Indonesian geographic data administration. 


2020 ◽  
Vol 12 (24) ◽  
pp. 4158
Author(s):  
Mengmeng Li ◽  
Alfred Stein

Spatial information regarding the arrangement of land cover objects plays an important role in distinguishing the land use types at land parcel or local neighborhood levels. This study investigates the use of graph convolutional networks (GCNs) in order to characterize spatial arrangement features for land use classification from high resolution remote sensing images, with particular interest in comparing land use classifications between different graph-based methods and between different remote sensing images. We examine three kinds of graph-based methods, i.e., feature engineering, graph kernels, and GCNs. Based upon the extracted arrangement features and features regarding the spatial composition of land cover objects, we formulated ten land use classifications. We tested those on two different remote sensing images, which were acquired from GaoFen-2 (with a spatial resolution of 0.8 m) and ZiYuan-3 (of 2.5 m) satellites in 2020 on Fuzhou City, China. Our results showed that land use classifications that are based on the arrangement features derived from GCNs achieved the highest classification accuracy than using graph kernels and handcrafted graph features for both images. We also found that the contribution to separating land use types by arrangement features varies between GaoFen-2 and ZiYuan-3 images, due to the difference in the spatial resolution. This study offers a set of approaches for effectively mapping land use types from (very) high resolution satellite images.


2018 ◽  
Vol 50 ◽  
pp. 02007
Author(s):  
Cecile Tondriaux ◽  
Anne Costard ◽  
Corinne Bertin ◽  
Sylvie Duthoit ◽  
Jérôme Hourdel ◽  
...  

In each winegrowing region, the winegrower tries to value its terroir and the oenologists do their best to produce the best wine. Thanks to new remote sensing techniques, it is possible to implement a segmentation of the vineyard according to the qualitative potential of the vine stocks and make the most of each terroir to improve wine quality. High resolution satellite images are processed in several spectral bands and algorithms set-up specifically for the Oenoview service allow to estimate vine vigour and a heterogeneity index that, used together, directly reflect the vineyard oenological potential. This service is used in different terroirs in France (Burgundy, Languedoc, Bordeaux, Anjou) and in other countries (Chile, Spain, Hungary and China). From this experience, we will show how remote sensing can help managing vine and wine production in all covered terroirs. Depending on the winegrowing region and its specificities, its use and results present some differences and similarities that we will highlight. We will give an overview of the method used, the advantage of implementing field intra-or inter-selection and how to optimize the use of amendment and sampling strategy as well as how to anticipate the whole vineyard management.


2021 ◽  
Vol 9 (1) ◽  
pp. 47-70
Author(s):  
Kumar Gaurav ◽  
François Métivier ◽  
Rajiv Sinha ◽  
Amit Kumar ◽  
Sampat Kumar Tandon ◽  
...  

Abstract. We propose an innovative methodology to estimate the formative discharge of alluvial rivers from remote sensing images. This procedure involves automatic extraction of the width of a channel from Landsat Thematic Mapper, Landsat 8, and Sentinel-1 satellite images. We translate the channel width extracted from satellite images to discharge using a width–discharge regime curve established previously by us for the Himalayan rivers. This regime curve is based on the threshold theory, a simple physical force balance that explains the first-order geometry of alluvial channels. Using this procedure, we estimate the formative discharge of six major rivers of the Himalayan foreland: the Brahmaputra, Chenab, Ganga, Indus, Kosi, and Teesta rivers. Except highly regulated rivers (Indus and Chenab), our estimates of the discharge from satellite images can be compared with the mean annual discharge obtained from historical records of gauging stations. We have shown that this procedure applies both to braided and single-thread rivers over a large territory. Furthermore, our methodology to estimate discharge from remote sensing images does not rely on continuous ground calibration.


Author(s):  
Changmiao Hu ◽  
Ping Tang

In recent years, China's demand for satellite remote sensing images increased. Thus, the country launched a series of satellites equipped with high-resolution sensors. The resolutions of these satellites range from 30 m to a few meters, and the spectral range covers the visible to the near-infrared band. These satellite images are mainly used for environmental monitoring, mapping, land surface classification and other fields. However, haze is an important factor that often affects image quality. Thus, dehazing technology is becoming a critical step in high-resolution remote sensing image processing. This paper presents a rapid algorithm for dehazing based on a semi-physical haze model. Large-scale median filtering technique is used to extract large areas of bright, low-frequency information from images to estimate the distribution and thickness of the haze. Four images from different satellites are used for experiment. Results show that the algorithm is valid, fast, and suitable for the rapid dehazing of numerous large-sized high-resolution remote sensing images in engineering applications.


Sign in / Sign up

Export Citation Format

Share Document