scholarly journals GENERATION OF THE 30 M-MESH GLOBAL DIGITAL SURFACE MODEL BY ALOS PRISM

Author(s):  
T. Tadono ◽  
H. Nagai ◽  
H. Ishida ◽  
F. Oda ◽  
S. Naito ◽  
...  

Topographical information is fundamental to many geo-spatial related information and applications on Earth. Remote sensing satellites have the advantage in such fields because they are capable of global observation and repeatedly. Several satellite-based digital elevation datasets were provided to examine global terrains with medium resolutions e.g. the Shuttle Radar Topography Mission (SRTM), the global digital elevation model by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER GDEM). A new global digital surface model (DSM) dataset using the archived data of the Panchromatic Remote-sensing Instrument for Stereo Mapping (PRISM) onboard the Advanced Land Observing Satellite (ALOS, nicknamed “Daichi”) has been completed on March 2016 by Japan Aerospace Exploration Agency (JAXA) collaborating with NTT DATA Corp. and Remote Sensing Technology Center, Japan. This project is called “ALOS World 3D” (AW3D), and its dataset consists of the global DSM dataset with 0.15 arcsec. pixel spacing (approx. 5 m mesh) and ortho-rectified PRISM image with 2.5 m resolution. JAXA is also processing the global DSM with 1 arcsec. spacing (approx. 30 m mesh) based on the AW3D DSM dataset, and partially releasing it free of charge, which calls “ALOS World 3D 30 m mesh” (AW3D30). The global AW3D30 dataset will be released on May 2016. This paper describes the processing status, a preliminary validation result of the AW3D30 DSM dataset, and its public release status. As a summary of the preliminary validation of AW3D30 DSM, 4.40 m (RMSE) of the height accuracy of the dataset was confirmed using 5,121 independent check points distributed in the world.

Author(s):  
T. Tadono ◽  
H. Nagai ◽  
H. Ishida ◽  
F. Oda ◽  
S. Naito ◽  
...  

Topographical information is fundamental to many geo-spatial related information and applications on Earth. Remote sensing satellites have the advantage in such fields because they are capable of global observation and repeatedly. Several satellite-based digital elevation datasets were provided to examine global terrains with medium resolutions e.g. the Shuttle Radar Topography Mission (SRTM), the global digital elevation model by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER GDEM). A new global digital surface model (DSM) dataset using the archived data of the Panchromatic Remote-sensing Instrument for Stereo Mapping (PRISM) onboard the Advanced Land Observing Satellite (ALOS, nicknamed “Daichi”) has been completed on March 2016 by Japan Aerospace Exploration Agency (JAXA) collaborating with NTT DATA Corp. and Remote Sensing Technology Center, Japan. This project is called “ALOS World 3D” (AW3D), and its dataset consists of the global DSM dataset with 0.15 arcsec. pixel spacing (approx. 5 m mesh) and ortho-rectified PRISM image with 2.5 m resolution. JAXA is also processing the global DSM with 1 arcsec. spacing (approx. 30 m mesh) based on the AW3D DSM dataset, and partially releasing it free of charge, which calls “ALOS World 3D 30 m mesh” (AW3D30). The global AW3D30 dataset will be released on May 2016. This paper describes the processing status, a preliminary validation result of the AW3D30 DSM dataset, and its public release status. As a summary of the preliminary validation of AW3D30 DSM, 4.40 m (RMSE) of the height accuracy of the dataset was confirmed using 5,121 independent check points distributed in the world.


Author(s):  
Hailu Zewde Abili

DEM can be generated from a wide range of sources including land surveys, Photogrammetry, and Remote sensing satellites. SRTM 30m DEM by The Shuttle Radar Topography Mission (SRTM), the Global Digital Elevation Model by Advanced Spaceborne Thermal Emission and Reflectance Radiometer (ASTER GDEM) and a global surface model called ALOS Worldview 3D 30 meter (AW3D30) by Advanced Land Observing Satellite (ALOS) are satellite-based global DEMs open-source DEM datasets. This study aims to assess the vertical accuracy of ASTER GDEM2, SRTM 30m, and ALOS (AW3D30) global DEMs over Ethiopia in the study area-Adama by using DGPS points and available accurate reference DEM data. The method used to evaluate the vertical accuracy of those DEMs ranges from simple visual comparison to relative and absolute comparisons providing quantitative assessment (Statistical) that used the elevation differences between DEM datasets and reference datasets. The result of this assessment showed better accuracy of SRTM 30m DEM (having RMSE of ± 4.63 m) and closely followed by ALOS (AW3D30) DEM which scored RMSE of ± 5.25 m respectively. ASTER GDEM 2 showed the least accuracy by scoring RMSE of ± 11.18 m in the study area. The second accuracy assessment was done by the analysis of derived products such as slope and drainage networks. This also resulted in a better quality of DEM derived products for SRTM than ALOS DEM and ASTER GDEM.


Author(s):  
J. Takaku ◽  
T. Tadono ◽  
M. Doutsu ◽  
F. Ohgushi ◽  
H. Kai

Abstract. In 2016, the first processing of the semi-global digital surface models (DSMs) utilizing all the archives of stereo imageries derived from the Panchromatic Remote sensing Instrument for Stereo Mapping (PRISM) onboard the Advanced Land Observing Satellite (ALOS) was successfully completed. The dataset was freely released to the public in 30 m grid spacing as the ‘ALOS World 3D - 30m (AW3D30)’, which was generated from its original version processed in 5 m or 2.5 m grid spacing. The dataset has been updated since then to improve the absolute/relative height accuracies with additional calibrations. However, the most significant update that should be applied for improving the data usability is the filling of void areas, which correspond to approx. 10% of semiglobal coverage, mostly due to cloud covers. In 2020, we completed the filling process by using other open-access digital elevation models (DEMs) such as Shuttle Radar Topography Mission (SRTM) DEM, Advanced Spaceborne Thermal Emission and Reflection Radiometer Global DEM (ASTER GDEM), ArcticDEM, etc., except for Antarctica. In this paper, we report on the filling process of the remaining voids in Antarctica by using other open-access DEMs such as Reference Elevation Model of Antarctica (REMA) DSM, TerraSAR-X add-on for Digital Elevation Measurement (TanDEM-X, TDX) 90m DEM, and ASTER GDEM to complete the void-free semi-global AW3D30 datasets.


Author(s):  
J. Takaku ◽  
T. Tadono ◽  
M. Doutsu ◽  
F. Ohgushi ◽  
H. Kai

Abstract. In 2016 we first completed the global data processing of digital surface models (DSMs) by using the whole archives of stereo imageries derived from the Panchromatic Remote sensing Instrument for Stereo Mapping (PRISM) onboard the Advanced Land Observing Satellite (ALOS). The dataset was freely released to the public in 30 m grid spacing as the ‘ALOS World 3D - 30m (AW3D30)’, which was generated from its original version processed in 5 m or 2.5 m grid spacing. The dataset has been updated since then to improve the absolute/relative height accuracies with additional calibrations. However the most significant update that should be applied for improving the data usability is the filling of void areas, which correspond to approx. 10% of global coverage, mostly due to cloud covers. In this paper we introduce the updates of AW3D30 filling the voids with other open-access DSMs such as Shuttle Radar Topography Mission (SRTM) Digital Elevation Model (DEM), Advanced Spaceborne Thermal Emission and Reflection Radiometer Global DEM (ASTER GDEM), ArcticDEM, etc., through inter-comparisons among these datasets.


2019 ◽  
Vol 25 (8) ◽  
pp. 100-112
Author(s):  
Raghad Hadi Hasan

This study aims to estimate the accuracy of digital elevation models (DEM) which are created with exploitation of open source Google Earth data and comparing with the widely available DEM datasets, Shuttle Radar Topography Mission (SRTM), version 3, and Advanced Spaceborne Thermal Emission and Reflection Radiometer Global Digital Elevation Model (ASTER GDEM), version 2. The GPS technique is used in this study to produce digital elevation raster with a high level of accuracy, as reference raster, compared to the DEM datasets. Baghdad University, Al Jadriya campus, is selected as a study area. Besides, 151 reference points were created within the study area to evaluate the results based on the values of RMS.Furthermore, the Geographic Information System (GIS) was utilized to analyze, imagine and interpolate data in this study. The result of the statistical analysis revealed that RMSE of DEM related to the differences between the reference points and Google Earth, SRTM DEM and ASTER GDEM are 6.9, 5.5 and 4.8, respectively. What is more, a finding of this study shows convergence the level of accuracy for all open sources used in this study.  


Author(s):  
X. Qiao ◽  
S. H. Lv ◽  
L. L. Li ◽  
X. J. Zhou ◽  
H. Y. Wang ◽  
...  

Compared to the wide use of digital elevation model (DEM), digital surface model (DSM) receives less attention because that it is composed by not only terrain surface, but also vegetations and man-made objects which are usually regarded as useless information. Nevertheless, these objects are useful for the identification of obstacles around an aerodrome. The primary objective of the study was to determine the applicability of DSM in obstacle clearance surveying of aerodrome. According to the requirements of obstacle clearance surveying at QT airport, aerial and satellite imagery were used to generate DSM, by means of photogrammetry, which was spatially analyzed with the hypothetical 3D obstacle limitation surfaces (OLS) to identify the potential obstacles. Field surveying was then carried out to retrieve the accurate horizontal position and height of the obstacles. The results proved that the application of DSM could make considerable improvement in the efficiency of obstacle clearance surveying of aerodrome.


Land ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 430
Author(s):  
Michał Sobala ◽  
Urszula Myga-Piątek ◽  
Bartłomiej Szypuła

A viewshed analysis is of great importance in mountainous areas characterized by high landscape values. The aim of this research was to determine the impact of reforestation occurring on former pasturelands on changes in the viewshed, and to quantify changes in the surface of glades. We combine a horizontal and a vertical approach to landscape analysis. The changes in non-forest areas and the viewshed from viewpoints located in glades were calculated using historical cartographic materials and a more recent Digital Elevation Model and Digital Surface Model. An analysis was conducted using a Visibility tool in ArcGIS. The non-forest areas decreased in the period 1848–2015. The viewshed in the majority of viewpoints also decreased in the period 1848–2015. In the majority of cases, the maximal viewsheds were calculated in 1879/1885 and 1933 (43.8% of the analyzed cases), whereas the minimal ones were calculated in 2015 (almost 57.5% of analyzed cases). Changes in the viewshed range from 0.2 to 23.5 km2 with half the cases analyzed being no more than 1.4 km2. The results indicate that forest succession on abandoned glades does not always cause a decline in the viewshed. Deforestation in neighboring areas may be another factor that has an influence on the decline.


2019 ◽  
Vol 20 (1) ◽  
pp. 9
Author(s):  
Fitriani Agustin ◽  
Sutikno Bronto

Remote sensing technology greatly helps to identify the various of volcano features, including active, old and ancient volcanoes. The aim of this  paper is intended to introduce various volcanic features in the Gede Volcano Complexs (GVC) and souronding area; compose volcanostratigraphy; and estimate the history of the volcanoes. The method used is a visual interpretation 9 meters spatial resolution of Digital Elevation Model (DEM) TerraSar-x image. Indonesian Stratigraphy Nomenclature Guide 1996 was implemented in vocanostratigraphy unit classification, involving Arc, Super Brigate, Brigate, Crown and Hummockly. Based on the interpretation the DEM image, volcanostratigraphic unit the Gede Volcano Complex consists of Bregade Masigit (Br. M.), which consists of Joklok (Gm.J.) and Gegerbentang (Gm.G.) Hummocs; Crown Lingkung (Kh.L.) consisting of Pangrango (Gm.P.), Situ Gunung (Gm Sg.), Cikahuripan (Gm.Ck.), Pasir Prahu (Gm.Ph) Hummocs; Gege Crown (Kh.G.), which is located in the east of Lingkung Crown. The Gede Crown consists of Gumuruh humock (Gm.Gh.), Gunung Gede lava flows (LG 1,2,3,4,5), and giant debrise avalances (gv-G). The geological mapping based volcanostratigraphy is very useful for exploration of mineral and energy resources, as well as geological hazards.Keywords : volcanostratigraphy, DEM TerraSar-x image, Gunung Gede Complexs.


2010 ◽  
Vol 7 (1) ◽  
pp. 135-177
Author(s):  
M. El Haj Tahir ◽  
A. Kääb ◽  
C.-Y. Xu

Abstract. This paper is part of a set of studies to evaluate the spatial and temporal variability of soil water in terms of natural as well as land-use changes as fundamental factors for vegetation regeneration in arid ecosystems in the Blue Nile-Sudan. The specific aim is to indicate the spatial distribution of soil erosion caused by the rains of 2006. The current study is conducted to determine whether automatic classification of multispectral Advanced Space borne Thermal Emission and Reflection Radiometer (ASTER) imagery could accurately discriminate erosion gullies. Shuttle Radar Topography Mission (SRTM) is used to orthoproject ASTER data. A maximum likelihood classifier is trained with four classes, Gullies, Flat_Land, Mountains and Water and applied to images from March and December 2006. Validation is done with field data from December and January 2006/2007, and using drainage network analysis of SRTM digital elevation model. The results allow the identification of erosion gullies and subsequent estimation of eroded area. Consequently the results were up-scaled using Moderate Resolution Imaging Spectroradiometer (MODIS) images of the same dates. Because the selected study site is representative of the wider Blue Nile province, it is expected that the approach presented could be applied to larger areas.


2021 ◽  
Vol 7 (2) ◽  
pp. 57-74
Author(s):  
Lamyaa Gamal EL-Deen Taha ◽  
A. I. Ramzi ◽  
A. Syarawi ◽  
A. Bekheet

Until recently, the most highly accurate digital surface models were obtained from airborne lidar. With the development of a new generation of large format digital photogrammetric aerial camera, a fully digital photogrammetric workflow became possible. Digital airborne images are sources for elevation extraction and orthophoto generation. This research concerned with the generation of digital surface models and orthophotos as applications from high-resolution images.  In this research, the following steps were performed. A Benchmark data of LIDAR and digital aerial camera have been used.  Firstly, image orientation, AT have been performed. Then the automatic digital surface model DSM generation has been produced from the digital aerial camera. Thirdly true digital ortho has been generated from the digital aerial camera also orthoimage will be generated using LIDAR digital elevation model (DSM). Leica Photogrammetric Suite (LPS) module of Erdsa Imagine 2014 software was utilized for processing. Then the resulted orthoimages from both techniques were mosaicked. The results show that automatic digital surface model DSM that been produced from digital aerial camera method has very high dense photogrammetric 3D point clouds compared to the LIDAR 3D point clouds. It was found that the true orthoimage produced from the second approach is better than the true orthoimage produced from the first approach. The five approaches were tested for classification of the best-orthorectified image mosaic using subpixel based (neural network) and pixel-based ( minimum distance and maximum likelihood).Multicues were extracted such as texture(entropy-mean),Digital elevation model, Digital surface model ,normalized digital surface model (nDSM) and intensity image. The contributions of the individual cues used in the classification have been evaluated. It was found that the best cue integration is intensity (pan) +nDSM+ entropy followed by intensity (pan) +nDSM+mean then intensity image +mean+ entropy after that DSM )image and two texture measures (mean and entropy) followed by the colour image. The integration with height data increases the accuracy. Also, it was found that the integration with entropy texture increases the accuracy. Resulted in fifteen cases of classification it was found that maximum likelihood classifier is the best followed by minimum distance then neural network classifier. We attribute this to the fine resolution of the digital camera image. Subpixel classifier (neural network) is not suitable for classifying aerial digital camera images. 


Sign in / Sign up

Export Citation Format

Share Document