scholarly journals Design and evaluation of a novel upper limb rehabilitation robot with space training based on an end effector

2021 ◽  
Vol 12 (1) ◽  
pp. 639-648
Author(s):  
Qiaoling Meng ◽  
Zongqi Jiao ◽  
Hongliu Yu ◽  
Weisheng Zhang

Abstract. The target of this paper is to design a lightweight upper limb rehabilitation robot with space training based on end-effector configuration and to evaluate the performance of the proposed mechanism. In order to implement this purpose, an equivalent mechanism to the human being upper limb is proposed before the design. Then, a 4 degrees of freedom (DOF) end-effector-based upper limb rehabilitation robot configuration is designed to help stroke patients perform space rehabilitation training of the shoulder flexion/extension and adduction/abduction and elbow flexion/extension. Thereafter, its kinematical model is established together with the proposed equivalent upper limb mechanism. The Monte Carlo method is employed to establish their workspace. The results show that the overlap of the workspace between the proposed mechanism and the equivalent mechanism is 96.61 %. In addition, this paper also constructs a human–machine closed-chain mechanism to analyze the flexibility of the mechanism. According to the relative manipulability and manipulability ellipsoid, the highly flexible area of the mechanism accounts for 67.6 %, and the mechanism is far away from the singularity on the drinking trajectory. In the end, the single-joint training experiments and a drinking water training trajectory planning experiment are developed and the prototype is manufactured to verify it.

2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Yali Liu ◽  
Chong Li ◽  
Linhong Ji ◽  
Sheng Bi ◽  
Xuemin Zhang ◽  
...  

Numerous robots have been widely used to deliver rehabilitative training for hemiplegic patients to improve their functional ability. Because of the complexity and diversity of upper limb motion, customization of training patterns is one key factor during upper limb rehabilitation training. Most of the current rehabilitation robots cannot intelligently provide adaptive training parameters, and they have not been widely used in clinical rehabilitation. This article proposes a new end-effector upper limb rehabilitation robot, which is a two-link robotic arm with two active degrees of freedom. This work investigated the kinematics and dynamics of the robot system, the control system, and the realization of different rehabilitation therapies. We also explored the influence of constraint in rehabilitation therapies on interaction force and muscle activation. The deviation of the trajectory of the end effector and the required trajectory was less than 1 mm during the tasks, which demonstrated the movement accuracy of the robot. Besides, results also demonstrated the constraint exerted by the robot provided benefits for hemiplegic patients by changing muscle activation in the way similar to the movement pattern of the healthy subjects, which indicated that the robot can improve the patient’s functional ability by training the normal movement pattern.


2021 ◽  
Author(s):  
Liaoyuan Li ◽  
Jianhai Han ◽  
Xiangpan Li ◽  
Bingjing Guo ◽  
Pengpeng Xia ◽  
...  

2011 ◽  
Vol 474-476 ◽  
pp. 1315-1320
Author(s):  
Xiang Li Cheng ◽  
Yi Qi Zhou ◽  
Cui Peng Zuo ◽  
Xiao Hua Fan

To assist stroke patients with rehabilitation training, an upper limb rehabilitation robot with an exoskeleton structure and three degrees of freedom (DOF) was developed in this paper. Under the guidance of the theory of rehabilitation medicine, the mechanical design of the robot was completed. Then, the kinematics equations were established by means of homogeneous transformation, including the forward kinematics and the inverse kinematics. The kinematical analysis was carried out and the algebraic solution of inverse kinematics was derived, which provided a theoretical basis for realizing the intelligent control. To validate the performance, the kinematical simulation was conducted, and the simulation results showed that the design of the exoskeleton robot was feasible.


2020 ◽  
Vol 10 (19) ◽  
pp. 6684 ◽  
Author(s):  
Leigang Zhang ◽  
Shuai Guo ◽  
Qing Sun

Robot-assisted rehabilitation therapy has been proven to effectively improve upper limb motor function and daily behavior of patients with motor dysfunction, and the demand has increased at every stage of the rehabilitation recovery. According to the motor relearning program theory, upper limb motor dysfunction can be restored by a certain amount of repetitive training. Robotics devices can be an approach to accelerate the rehabilitation process by maximizing the patients’ training intensity. This paper develops a new end-effector upper limb rehabilitation robot (EULRR) first and then presents a controller that is suitable for the assist-as-needed (AAN) training of the patients when performing the rehabilitation training. The AAN controller is a strategy that helps the patient’s arm to stay close to the given trajectory while allowing for spatial freedom. This controller enables the patient’s arm to have spatial freedom by constructing a virtual channel around the predetermined training trajectory. Patients could move their arm freely in the allowed virtual channel during rehabilitation training while the robot provides assistance when deviating from the virtual channel. The AAN controller is preliminarily tested with a healthy male subject in different conditions based on the EULRR. The experimental results demonstrate that the proposed AAN controller could provide assistance when moving out of the virtual channel and provide no assistance when moving along the trajectory within the virtual channel. In the close future, the controller is planned to be used in elderly volunteers and help to increase the intensity of the rehabilitation therapy by assisting the arm movement and by provoking active participation.


2013 ◽  
Vol 572 ◽  
pp. 619-623 ◽  
Author(s):  
Lan Wang ◽  
Zheng Qian Yin ◽  
Yuan Hang Sun

Based on the analysis of the methods for upper limb rehabilitation training, an anthropomorphic upper-limb exoskeleton was developed. Anatomical and physiological characteristics and upper limb joint ranges of motion are also considered. The rehabilitation robot is achieved by 4 single-axis revolute joints which are shoulder abduction-adduction (abd-add), shoulder flexion-extension (flx-ext), elbow flx-ext and wrist flx-ext. Kinematics and dynamics analysis of the rehabilitation robot are made. The passive rehabilitation mode and active rehabilitation mode are researched, and the result of experenment is shown that the robot can finish the rehabilitation task well.


ROBOT ◽  
2011 ◽  
Vol 33 (3) ◽  
pp. 307-313 ◽  
Author(s):  
Baoguo XU ◽  
Si PENG ◽  
Aiguo SONG

ROBOT ◽  
2012 ◽  
Vol 34 (5) ◽  
pp. 539 ◽  
Author(s):  
Lizheng PAN ◽  
Aiguo SONG ◽  
Guozheng XU ◽  
Huijun LI ◽  
Baoguo XU

Sign in / Sign up

Export Citation Format

Share Document