equivalent mechanism
Recently Published Documents


TOTAL DOCUMENTS

38
(FIVE YEARS 12)

H-INDEX

7
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Lorenzo Eugenio Leiva ◽  
Omar Orellana ◽  
Michael Ibba ◽  
Assaf Katz

The bacterial response to oxidative stress requires the adaptation of the proteome to the hostile environment. It has been reported that oxidative stress induces a strong and global inhibition of both, transcription and translation. Nevertheless, whereas it is well known that transcription of a small group of genes is induced thanks to transcription factors such as OxyR and SoxR, an equivalent mechanism has not been described for translation. Here we report that whereas canonical translation that depends on Shine Dalgarno recognition is inhibited by oxidative stress in Escherichia coli, the translation of leaderless mRNA (lmRNA) is enhanced under such conditions. Both, inhibition of canonical translation and enhancement of lmRNA translation, depend on the production of (p)ppGpp. We propose that such a mechanism would allow bacteria to rapidly adapt their proteome to hostile conditions and is, perhaps, a general strategy to confront strong stressful conditions.


2021 ◽  
Vol 12 (1) ◽  
pp. 639-648
Author(s):  
Qiaoling Meng ◽  
Zongqi Jiao ◽  
Hongliu Yu ◽  
Weisheng Zhang

Abstract. The target of this paper is to design a lightweight upper limb rehabilitation robot with space training based on end-effector configuration and to evaluate the performance of the proposed mechanism. In order to implement this purpose, an equivalent mechanism to the human being upper limb is proposed before the design. Then, a 4 degrees of freedom (DOF) end-effector-based upper limb rehabilitation robot configuration is designed to help stroke patients perform space rehabilitation training of the shoulder flexion/extension and adduction/abduction and elbow flexion/extension. Thereafter, its kinematical model is established together with the proposed equivalent upper limb mechanism. The Monte Carlo method is employed to establish their workspace. The results show that the overlap of the workspace between the proposed mechanism and the equivalent mechanism is 96.61 %. In addition, this paper also constructs a human–machine closed-chain mechanism to analyze the flexibility of the mechanism. According to the relative manipulability and manipulability ellipsoid, the highly flexible area of the mechanism accounts for 67.6 %, and the mechanism is far away from the singularity on the drinking trajectory. In the end, the single-joint training experiments and a drinking water training trajectory planning experiment are developed and the prototype is manufactured to verify it.


2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Bingyan Li ◽  
Yuxuan Liu ◽  
Rongqiang Liu ◽  
Hongwei Guo ◽  
Qiang Cong ◽  
...  

This paper proposes a double-level guyed membrane antenna for stiffness improvement of a large-scale tri-prism deployable mast using the collapsible tubular mast (CTM). Initially, the construction of the antenna and the modeling of the CTM boom are illustrated. Afterwards, the central mast with isosceles triangular cross section is mathematically equivalent to a continuum beam, in which the equations of motion and the constitutive relations are derived. Based on the equivalent central beam, the double-level guyed mast for the membrane antenna is modeled as a 2(3-SPS-S) mechanism, and then velocity Jacobian matrices and stiffness matrices of SPS branches are constructed. Additionally, the total stiffness matrix of the equivalent mechanism is derived with the principle of virtual work and then evaluated as an accurate approach. Finally, with the aim to improve the static stiffness of the double-level guyed mast, the numerical analysis using the Genetic Algorithm (GA) is carried out for optimizing the distribution of guys in terms of anchor positions and attachment heights.


Sign in / Sign up

Export Citation Format

Share Document