scholarly journals Technical Note: An operational landslide early warning system at regional scale based on space–time-variable rainfall thresholds

2015 ◽  
Vol 15 (4) ◽  
pp. 853-861 ◽  
Author(s):  
S. Segoni ◽  
A. Battistini ◽  
G. Rossi ◽  
A. Rosi ◽  
D. Lagomarsino ◽  
...  

Abstract. We set up an early warning system for rainfall-induced landslides in Tuscany (23 000 km2). The system is based on a set of state-of-the-art intensity–duration rainfall thresholds (Segoni et al., 2014b) and makes use of LAMI (Limited Area Model Italy) rainfall forecasts and real-time rainfall data provided by an automated network of more than 300 rain gauges. The system was implemented in a WebGIS to ease the operational use in civil protection procedures: it is simple and intuitive to consult, and it provides different outputs. When switching among different views, the system is able to focus both on monitoring of real-time data and on forecasting at different lead times up to 48 h. Moreover, the system can switch between a basic data view where a synoptic scenario of the hazard can be shown all over the region and a more in-depth view were the rainfall path of rain gauges can be displayed and constantly compared with rainfall thresholds. To better account for the variability of the geomorphological and meteorological settings encountered in Tuscany, the region is subdivided into 25 alert zones, each provided with a specific threshold. The warning system reflects this subdivision: using a network of more than 300 rain gauges, it allows for the monitoring of each alert zone separately so that warnings can be issued independently. An important feature of the warning system is that the visualization of the thresholds in the WebGIS interface may vary in time depending on when the starting time of the rainfall event is set. The starting time of the rainfall event is considered as a variable by the early warning system: whenever new rainfall data are available, a recursive algorithm identifies the starting time for which the rainfall path is closest to or overcomes the threshold. This is considered the most hazardous condition, and it is displayed by the WebGIS interface. The early warning system is used to forecast and monitor the landslide hazard in the whole region, providing specific alert levels for 25 distinct alert zones. In addition, the system can be used to gather, analyze, display, explore, interpret and store rainfall data, thus representing a potential support to both decision makers and scientists.

2014 ◽  
Vol 2 (10) ◽  
pp. 6599-6622 ◽  
Author(s):  
S. Segoni ◽  
A. Battistini ◽  
G. Rossi ◽  
A. Rosi ◽  
D. Lagomarsino ◽  
...  

Abstract. We set up an early warning system for rainfall-induced landslides in Tuscany (23 000 km2). The system is based on a set of state-of-the-art intensity-duration rainfall thresholds (Segoni et al., 2014b), makes use of LAMI rainfall forecasts and real-time rainfall data provided by an automated network of more than 300 rain-gauges. The system was implemented in a WebGIS to ease the operational use in civil protection procedures: it is simple and intuitive to consult and it provides different outputs. Switching among different views, the system is able to focus both on monitoring of real time data and on forecasting at different lead times up to 48 h. Moreover, the system can switch between a very straightforward view where a synoptic scenario of the hazard can be shown all over the region and a more in-depth view were the rainfall path of rain-gauges can be displayed and constantly compared with rainfall thresholds. To better account for the high spatial variability of the physical features, which affects the relationship between rainfall and landslides, the region is subdivided into 25 alert zones, each provided with a specific threshold. The warning system reflects this subdivision: using a network of 332 rain gauges, it allows monitoring each alert zone separately and warnings can be issued independently from an alert zone to another. An important feature of the warning system is the use of thresholds that may vary in time adapting at the conditions of the rainfall path recorded by the rain-gauges. Depending on when the starting time of the rainfall event is set, the comparison with the threshold may produce different outcomes. Therefore, a recursive algorithm was developed to check and compare with the thresholds all possible starting times, highlighting the worst scenario and showing in the WebGIS interface at what time and how much the rainfall path has exceeded or will exceed the most critical threshold. Besides forecasting and monitoring the hazard scenario over the whole region with hazard levels differentiated for 25 distinct alert zones, the system can be used to gather, analyze, visualize, explore, interpret and store rainfall data, thus representing a potential support to both decision makers and scientists.


Landslides ◽  
2019 ◽  
Vol 16 (12) ◽  
pp. 2395-2408 ◽  
Author(s):  
Geethu Thottungal Harilal ◽  
Dhanya Madhu ◽  
Maneesha Vinodini Ramesh ◽  
Divya Pullarkatt

2012 ◽  
Vol 446-449 ◽  
pp. 3422-3427
Author(s):  
Wang Sheng Liu ◽  
Ming Zhao

Today there is an urgent need for effective monitoring whether for old buildings or new ones. While conventional early warning system for real-time monitoring is based on safety factor, this paper proposes a new reliability-based framework to monitor the safety of RC buildings probabilistically. The framework includes modeling resistance, predicting probability distribution of load effect, calculating reliability and setting reliability index threshold. The in-situ test data enables to update the resistance model through a Bayesian process. Meanwhile, the observed monitoring data predicts the probability distribution of load effect. FORM is used to calculate the reliability because the limit state function for real-time monitoring is linear and simple. This study shows that the reliability-based early warning system is of more scientific sense in quantifying the safety and may be applied to many engineering fields.


2018 ◽  
Vol 14 (01) ◽  
pp. 66
Author(s):  
Gan Bo ◽  
Jin Shan

In order to solve the shortcomings of the landslide monitoring technology method, a set of landslides monitoring and early warning system is designed. It can achieve real-time sensor data acquisition, remote transmission and query display. In addition, aiming at the harsh environment of landslide monitoring and the performance requirements of the monitoring system, an improved minimum hop routing protocol is proposed. It can reduce network energy consumption, enhance network robustness, and improve node layout and networking flexibility. In order to realize the remote transmission of data, GPRS wireless communication is used to transmit monitoring data. Combined with remote monitoring center, real-time data display, query, preservation and landslide warning and prediction are realized. The results show that the sensor data acquisition system is accurate, the system is stable, and the node network is flexible. Therefore, the monitoring system has a good use value.


2013 ◽  
pp. 627-634 ◽  
Author(s):  
Francesco Ponziani ◽  
Nicola Berni ◽  
Marco Stelluti ◽  
Renato Zauri ◽  
Claudia Pandolfo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document