sensor data acquisition
Recently Published Documents


TOTAL DOCUMENTS

84
(FIVE YEARS 15)

H-INDEX

7
(FIVE YEARS 1)

Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 517
Author(s):  
Satish Kumar ◽  
Tushar Kolekar ◽  
Shruti Patil ◽  
Arunkumar Bongale ◽  
Ketan Kotecha ◽  
...  

Fused deposition modelling (FDM)-based 3D printing is a trending technology in the era of Industry 4.0 that manufactures products in layer-by-layer form. It shows remarkable benefits such as rapid prototyping, cost-effectiveness, flexibility, and a sustainable manufacturing approach. Along with such advantages, a few defects occur in FDM products during the printing stage. Diagnosing defects occurring during 3D printing is a challenging task. Proper data acquisition and monitoring systems need to be developed for effective fault diagnosis. In this paper, the authors proposed a low-cost multi-sensor data acquisition system (DAQ) for detecting various faults in 3D printed products. The data acquisition system was developed using an Arduino micro-controller that collects real-time multi-sensor signals using vibration, current, and sound sensors. The different types of fault conditions are referred to introduce various defects in 3D products to analyze the effect of the fault conditions on the captured sensor data. Time and frequency domain analyses were performed on captured data to create feature vectors by selecting the chi-square method, and the most significant features were selected to train the CNN model. The K-means cluster algorithm was used for data clustering purposes, and the bell curve or normal distribution curve was used to define individual sensor threshold values under normal conditions. The CNN model was used to classify the normal and fault condition data, which gave an accuracy of around 94%, by evaluating the model performance based on recall, precision, and F1 score.


Sensors ◽  
2021 ◽  
Vol 21 (20) ◽  
pp. 6851
Author(s):  
Vincent Roberge ◽  
Mohammed Tarbouchi

This paper proposes a framework for the wireless sensor data acquisition using a team of Unmanned Aerial Vehicles (UAVs). Scattered over a terrain, the sensors detect information about their surroundings and can transmit this information wirelessly over a short range. With no access to a terrestrial or satellite communication network to relay the information to, UAVs are used to visit the sensors and collect the data. The proposed framework uses an iterative k‑means algorithm to group the sensors into clusters and to identify Download Points (DPs) where the UAVs hover to download the data. A Single-Source–Shortest-Path algorithm (SSSP) is used to compute optimal paths between every pair of DPs with a constraint to reduce the number of turns. A genetic algorithm supplemented with a 2-opt local search heuristic is used to solve the multi-travelling salesperson problem and to find optimized tours for each UAVs. Finally, a collision avoidance strategy is implemented to guarantee collision-free trajectories. Concerned with the overall runtime of the framework, the SSSP algorithm is implemented in parallel on a graphics processing unit. The proposed framework is tested in simulation using three UAVs and realistic 3D maps with up to 100 sensors and runs in just 20.7 s, a 33.3× speed-up compared to a sequential execution on CPU. The results show that the proposed method is efficient at calculating optimized trajectories for the UAVs for data acquisition from wireless sensors. The results also show the significant advantage of the parallel implementation on GPU.


Author(s):  
Muhammad Fahmi Ali Fikri ◽  
Dany Primanita Kartikasari ◽  
Adhitya Bhawiyuga

Sensor data acquisition is used to obtain sensor data from IoT devices that already provide the required sensor data. To acquire sensor data, we can use Bluetooth Low Energy (BLE) protocol. This data acquisition aims to process further data which will later be sent to the server. Bluetooth Low Energy (BLE) has an architecture consisting of sensors, gateways, and data centers, but with this architecture, there are several weaknesses, namely the failure when sending data to the data center due to not being connected to internet network and data redundancy at the time of data delivery is done. The proposed solution to solve this problem is to create a system that can acquire sensor data using the Bluetooth Low Energy (BLE) protocol with use a store and forward mechanism and checking data redundancy. The proposed system will be implemented using sensors from IoT devices, the gateway used is Android devices, and using the Bluetooth Low Energy protocol to acquire data from sensors. Then the data will be sent to the cloud or server. The results of the test give the results of the system being successfully implemented and IoT devices can be connected to the gateway with a maximum distance of 10 meters. Then when the system stores, for every minute there is an increase in data of 4 kb. Then there is no data redundancy in the system.


2020 ◽  
Vol 47 (1) ◽  
pp. 109-118
Author(s):  
Cheonyong Kim ◽  
Sangdae Kim ◽  
Seungmin Oh ◽  
Kwansoo Jung

Sign in / Sign up

Export Citation Format

Share Document