scholarly journals Reply to Interactive comment of Franjo Šumanovac (Referee) on “Estimation of near-surface attenuation in the tectonically complex contact area of the Northwestern External Dinarides and the Adriatic foreland” by S. Markušić et al.

2019 ◽  
Author(s):  
Snjezana Markušić
Author(s):  
Angeli Jayme ◽  
Imad L. Al-Qadi

A thermomechanical coupling between a hyper-viscoelastic tire and a representative pavement layer was conducted to assess the effect of various temperature profiles on the mechanical behavior of a rolling truck tire. The two deformable bodies, namely the tire and pavement layer, were subjected to steady-state-uniform and non-uniform temperature profiles to identify the significance of considering temperature as a variable in contact-stress prediction. A myriad of ambient, internal air, and pavement-surface conditions were simulated, along with combinations of applied tire load, tire-inflation pressure, and traveling speed. Analogous to winter, the low temperature profiles induced a smaller tire-pavement contact area that resulted in stress localization. On the other hand, under high temperature conditions during the summer, higher tire deformation resulted in lower contact-stress magnitudes owing to an increase in the tire-pavement contact area. In both conditions, vertical and longitudinal contact stresses are impacted, while transverse contact stresses are relatively less affected. This behavior, however, may change under a non-free-rolling condition, such as braking, accelerating, and cornering. By incorporating temperature into the tire-pavement interaction model, changes in the magnitude and distribution of the three-dimensional contact stresses were manifested. This would have a direct implication on the rolling resistance and near-surface behavior of flexible pavements.


2019 ◽  
Author(s):  
Snježana Markušić ◽  
Davor Stanko ◽  
Tvrtko Korbar ◽  
Ivica Sović

Abstract. Seismic-induced ground motion at a site is generally influenced by seismic source, propagation path and local site conditions. Over the last several decades, researchers have consistently asserted that for near site attenuation, the spectral parameter kappa is subject primarily to site conditions. In this research we estimated parameter kappa based on the acceleration amplitude spectrum of shear waves, from the selected recordings of local earthquakes from seismological stations situated in the western part of Croatia from the slope of the high-frequency part. The spatial distribution of individual kappa values is compared with the azimuthal distribution of earthquake epicentres, with Vs30 values and the published coda-Q values for each station, as well as with isoseismal maps for several stronger events in the investigated area, along with the geological features. The dextral shift of crustal segments and frontal thrust of the External Dinarides along the Kvarner fault zone has probably had an impact on the geometry of the kappa parameter contour lines. These results are important for gaining further insight into the attenuation of near-surface crust layers in the Northwestern External Dinarides and the associated Adriatic foreland, as well as in similar geotectonic settings.


Author(s):  
P. Ogar ◽  
S. Belokobylsky ◽  
D. Gorokhov ◽  
E. Ugrumova

It is assumed that the influence of the remaining contacting asperities is equal to the action of the uniform loading qc outside the asperity contour. Three parameters are suggested as possible criteria of occurrence of plastic deformation in the subsurface layer of contact of a single asperity: critical value εc in which the equivalent stress is equal to the yield point σy; the relative contact area ηip at which plastic deformations occur; the ratio of the maximum pressure at the contact area to the yield point σy. For single asperities, the stability of the relative contact area at which plastic deformation begins is indicated. The criteria for plasticity characterizing respectively the onset of plastic deformation in the near-surface layer ηp ∗ and on the contact surface η̅p ∗ are proposed. The values of the criteria do not depend on the loading conditions and are determined by the complex parameter fy characterizing the microgeometry of the asperities and the mechanical properties of the material.


2019 ◽  
Vol 19 (12) ◽  
pp. 2701-2714 ◽  
Author(s):  
Snježana Markušić ◽  
Davor Stanko ◽  
Tvrtko Korbar ◽  
Ivica Sović

Abstract. Seismically induced ground motion at a site is generally influenced by the seismic source, the propagation path and the local site conditions. Over the last several decades, researchers have consistently asserted that for near-site attenuation, the spectral parameter κ is subject primarily to the site conditions. In this research, we estimated the parameter κ based on the acceleration amplitude spectrum of shear waves from local earthquakes recorded by seismological stations situated in the western part of Croatia from the slope of the high-frequency part. The spatial distribution of κ values is comparable with seismological, geophysical and geological features, with the published coda-Q values for each station as well as with the isoseismal maps for selected stronger earthquakes in the study area. The complex pattern of longitudinal and transversal major late-orogenic fault zones dissecting early-orogenic thin-skinned tectonic cover in the Kvarner area and the shallow depth to the Moho (Mohorovičić discontinuity) in the Adriatic foreland (southern Istria) are probably responsible for a significant part of wave attenuation and for the anisotropy of attenuation. Regional near-surface attenuation distribution and modelled macroseismic fields point to the conclusion that attenuation properties of rocks in the northwestern External Dinarides are far from isotropic, and the most likely anisotropy sources are the preferential orientations of cracks and fractures under the local tectonic stress field, trapping of waves along major faults (waveguides), and/or attenuation within the fault zones. These results are important for gaining further insight into the attenuation of near-surface crust layers in the northwestern External Dinarides and the associated Adriatic foreland as well as in similar geotectonic settings.


1988 ◽  
Vol 62 (01) ◽  
pp. 1-8 ◽  
Author(s):  
Ronald E. Martin

The utility of benthic foraminifera in bathymetric interpretation of clastic depositional environments is well established. In contrast, bathymetric distribution of benthic foraminifera in deep-water carbonate environments has been largely neglected. Approximately 260 species and morphotypes of benthic foraminifera were identified from 12 piston core tops and grab samples collected along two traverses 25 km apart across the northern windward margin of Little Bahama Bank at depths of 275-1,135 m. Certain species and operational taxonomic groups of benthic foraminifera correspond to major near-surface sedimentary facies of the windward margin of Little Bahama Bank and serve as reliable depth indicators. Globocassidulina subglobosa, Cibicides rugosus, and Cibicides wuellerstorfi are all reliable depth indicators, being most abundant at depths >1,000 m, and are found in lower slope periplatform aprons, which are primarily comprised of sediment gravity flows. Reef-dwelling peneroplids and soritids (suborder Miliolina) and rotaliines (suborder Rotaliina) are most abundant at depths <300 m, reflecting downslope bottom transport in proximity to bank-margin reefs. Small miliolines, rosalinids, and discorbids are abundant in periplatform ooze at depths <300 m and are winnowed from the carbonate platform. Increased variation in assemblage diversity below 900 m reflects mixing of shallow- and deep-water species by sediment gravity flows.


Author(s):  
P.M. Rice ◽  
MJ. Kim ◽  
R.W. Carpenter

Extrinsic gettering of Cu on near-surface dislocations in Si has been the topic of recent investigation. It was shown that the Cu precipitated hetergeneously on dislocations as Cu silicide along with voids, and also with a secondary planar precipitate of unknown composition. Here we report the results of investigations of the sense of the strain fields about the large (~100 nm) silicide precipitates, and further analysis of the small (~10-20 nm) planar precipitates.Numerous dark field images were analyzed in accordance with Ashby and Brown's criteria for determining the sense of the strain fields about precipitates. While the situation is complicated by the presence of dislocations and secondary precipitates, micrographs like those shown in Fig. 1(a) and 1(b) tend to show anomalously wide strain fields with the dark side on the side of negative g, indicating the strain fields about the silicide precipitates are vacancy in nature. This is in conflict with information reported on the η'' phase (the Cu silicide phase presumed to precipitate within the bulk) whose interstitial strain field is considered responsible for the interstitial Si atoms which cause the bounding dislocation to expand during star colony growth.


Author(s):  
Naresh N. Thadhani ◽  
Thad Vreeland ◽  
Thomas J. Ahrens

A spherically-shaped, microcrystalline Ni-Ti alloy powder having fairly nonhomogeneous particle size distribution and chemical composition was consolidated with shock input energy of 316 kJ/kg. In the process of consolidation, shock energy is preferentially input at particle surfaces, resulting in melting of near-surface material and interparticle welding. The Ni-Ti powder particles were 2-60 μm in diameter (Fig. 1). About 30-40% of the powder particles were Ni-65wt% and balance were Ni-45wt%Ti (estimated by EMPA).Upon shock compaction, the two phase Ni-Ti powder particles were bonded together by the interparticle melt which rapidly solidified, usually to amorphous material. Fig. 2 is an optical micrograph (in plane of shock) of the consolidated Ni-Ti alloy powder, showing the particles with different etching contrast.


Sign in / Sign up

Export Citation Format

Share Document