scholarly journals Sensitivity of the Weather Research and Forecasting model (WRF) to downscaling extreme events over Northern Tunisia

2021 ◽  
Author(s):  
Saoussen Dhib ◽  
Víctor Homar ◽  
Zoubeida Bargaoui ◽  
Mariadelmar Vich

Abstract. Rainfall is one of the most important variables for water and flood management. We investigate the capacity of the Weather Research and Forecasting model (WRF) to dynamically downscale the ECMWF Re-Analysis data for Northern Tunisia. This study aims to examine the sensitivity of WRF rainfall estimates to different Planetary Boundary Layer (PBL) and Cumulus Physics (Cu) schemes. The verification scheme consists of three statistical criteria (Root Mean Square Error (RMSE), Pearson correlation, and the ratio bias coefficient). Moreover, the FSS coefficient (fraction skill score) and the quality coefficient SAL (structure amplitude latitude) are calculated. The database is composed of four heavy events covering an average of 318 rainfall stations. We mean by heavy event, each event occurred a rainfall of more than 50 mm per observed day at least in one rainfall station. The sensitivity study showed that there is not a best common combination scheme (PBL and Cu) for all the events. The average of the best 10 combinations for each event is adopted to get the ensemble map. We conclude that some schemes are sensitive and others less sensitive. The best three performing schemes for PBL and Cu parametrizations are selected for future rainfall estimation by WRF over Northern Tunisia.

2017 ◽  
Vol 90 ◽  
pp. 107-125 ◽  
Author(s):  
Muhammad Omer Mughal ◽  
Mervyn Lynch ◽  
Frank Yu ◽  
Brendan McGann ◽  
Francois Jeanneret ◽  
...  

Author(s):  
Alessio Golzio ◽  
Silvia Ferrarese ◽  
Claudio Cassardo ◽  
Gugliemina Adele Diolaiuti ◽  
Manuela Pelfini

AbstractWeather forecasts over mountainous terrain are challenging due to the complex topography that is necessarily smoothed by actual local-area models. As complex mountainous territories represent 20% of the Earth’s surface, accurate forecasts and the numerical resolution of the interaction between the surface and the atmospheric boundary layer are crucial. We present an assessment of the Weather Research and Forecasting model with two different grid spacings (1 km and 0.5 km), using two topography datasets (NASA Shuttle Radar Topography Mission and Global Multi-resolution Terrain Elevation Data 2010, digital elevation models) and four land-cover-description datasets (Corine Land Cover, U.S. Geological Survey land-use, MODIS30 and MODIS15, Moderate Resolution Imaging Spectroradiometer land-use). We investigate the Ortles Cevadale region in the Rhaetian Alps (central Italian Alps), focusing on the upper Forni Glacier proglacial area, where a micrometeorological station operated from 28 August to 11 September 2017. The simulation outputs are compared with observations at this micrometeorological station and four other weather stations distributed around the Forni Glacier with respect to the latent heat, sensible heat and ground heat fluxes, mixing-layer height, soil moisture, 2-m air temperature, and 10-m wind speed. The different model runs make it possible to isolate the contributions of land use, topography, grid spacing, and boundary-layer parametrizations. Among the considered factors, land use proves to have the most significant impact on results.


2014 ◽  
Vol 31 (9) ◽  
pp. 2008-2014 ◽  
Author(s):  
Xin Zhang ◽  
Ying-Hwa Kuo ◽  
Shu-Ya Chen ◽  
Xiang-Yu Huang ◽  
Ling-Feng Hsiao

Abstract The nonlocal excess phase observation operator for assimilating the global positioning system (GPS) radio occultation (RO) sounding data has been proven by some research papers to produce significantly better analyses for numerical weather prediction (NWP) compared to the local refractivity observation operator. However, the high computational cost and the difficulties in parallelization associated with the nonlocal GPS RO operator deter its application in research and operational NWP practices. In this article, two strategies are designed and implemented in the data assimilation system for the Weather Research and Forecasting Model to demonstrate the capability of parallel assimilation of GPS RO profiles with the nonlocal excess phase observation operator. In particular, to solve the parallel load imbalance problem due to the uneven geographic distribution of the GPS RO observations, round-robin scheduling is adopted to distribute GPS RO observations among the processing cores to balance the workload. The wall clock time required to complete a five-iteration minimization on a demonstration Antarctic case with 106 GPS RO observations is reduced from more than 3.5 h with a single processing core to 2.5 min with 106 processing cores. These strategies present the possibility of application of the nonlocal GPS RO excess phase observation operator in operational data assimilation systems with a cutoff time limit.


Author(s):  
Reneta Dimitrova ◽  
Ashish Sharma ◽  
Harindra J. S. Fernando ◽  
Ismail Gultepe ◽  
Ventsislav Danchovski ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document