scholarly journals Supplementary material to "Characteristics of precipitation extremes over the Nordic region: added value of convection-permitting modeling"

Author(s):  
Erika Médus ◽  
Emma Dybro Thomassen ◽  
Danijel Belušić ◽  
Petter Lind ◽  
Peter Berg ◽  
...  
2020 ◽  
Author(s):  
Erika Toivonen ◽  
Danijel Belušić ◽  
Emma Dybro Thomassen ◽  
Peter Berg ◽  
Ole Bøssing Christensen ◽  
...  

<p>Extreme precipitation events have a major impact upon our society. Although many studies have indicated that it is likely that the frequency of such events will increase in a warmer climate, little has been done to assess changes in extreme precipitation at a sub-daily scale. Recently, there is more and more evidence that <span>high-resolution convection-permitting models </span><span>(CPMs)</span> (grid-mesh typically < 4 km) can represent especially short-duration precipitation extremes more accurately when compared with coarser-resolution <span>regional climate model</span><span>s </span><span>(RCMs)</span><span>.</span></p><p>This study investigates sub-daily and daily precipitation characteristics based on hourly <span>output data from the HARMONIE-Climate model </span>at 3-km and 12-km grid-mesh resolution over the Nordic region between 1998 and 2018. The RCM modelling chain uses the ERA-Interim reanalysis to drive a 12-km grid-mesh simulation which is further downscaled to 3-km grid-mesh resolution using a non-hydrostatic model set-up.</p><p>The statistical properties of the modeled extreme precipitation are compared to several sub-daily and daily observational products, including gridded and in-situ gauge data, from April to September. We investigate the skill of the model to represent different aspects of the frequency and intensity of extreme precipitation as well as intensity–duration–frequency (IDF) curves that are commonly used to investigate short duration extremes from an urban planning perspective. The high grid resolution combined with the 20-year-long simulation period allows for a robust assessment at a climatological time scale <span>and enables us to examine the added value of high-resolution </span><span>CPM</span><span> in reproducing precipitation extremes over the Nordic </span><span>region</span><span>. </span><span>Based on the tentative results, the high-resolution CPM can realistically capture the </span><span>characteristics </span><span>of precipitation extremes, </span><span>for instance, </span><span>in terms of improved diurnal cycle and maximum intensities of sub-daily precipitation.</span></p>


2021 ◽  
Author(s):  
João António Martins Careto ◽  
Pedro Miguel Matos Soares ◽  
Rita Margarida Cardoso ◽  
Sixto Herrera ◽  
José Manuel Guttiérrez

Author(s):  
Peter Berg ◽  
Ole B. Christensen ◽  
Katharina Klehmet ◽  
Geert Lenderink ◽  
Jonas Olsson ◽  
...  

2016 ◽  
Author(s):  
Hossein Tabari ◽  
Rozemien De Troch ◽  
Olivier Giot ◽  
Rafiq Hamdi ◽  
Piet Termonia ◽  
...  

Abstract. This study explores whether climate models with higher spatial resolution provide higher accuracy for precipitation simulations and/or different climate change signals. The outputs from two convection-permitting climate models (ALARO and CCLM) with a spatial resolution of 3–4 km are compared with those from the coarse scale driving models or reanalysis data for simulating/projecting daily and sub-daily precipitation quantiles. The high-resolution ALARO and CCLM models reveal an added value to capture sub-daily precipitation extremes during summer compared to the driving GCMs and reanalysis data. Further validation of historical climate simulations based on design precipitation statistics derived from intensity–duration–frequency (IDF) curves shows a better match of the convection-permitting model results with the observations-based IDF statistics. Results moreover indicate that one has to be careful in assuming spatial scale independency of climate change signals for the delta change downscaling method, as high-resolution models may show larger changes in extreme precipitation. These larger changes appear to be dependent on the climate model, since such intensification is not observed for the ALARO model.


2021 ◽  
Author(s):  
João António Martins Careto ◽  
Pedro Miguel Matos Soares ◽  
Rita Margarida Cardoso ◽  
Sixto Herrera ◽  
José Manuel Gutiérrez

2021 ◽  
Author(s):  
Erika Médus ◽  
Emma Dybro Thomassen ◽  
Danijel Belušić ◽  
Petter Lind ◽  
Peter Berg ◽  
...  

Abstract. It is well established that using km scale grid resolution for simulations of weather systems in weather and climate models enhances their realism. This study explores heavy and extreme precipitation characteristics over the Nordic region generated by the regional climate model, HARMONIE-Climate (HCLIM). Two model setups of HCLIM are used: ERA-Interim driven HCLIM12 covering Europe at 12 km resolution with parameterized convection and HCLIM3 covering the Nordic region with 3 km resolution and explicit deep convection. The HCLIM simulations are evaluated against several gridded and in situ observation datasets for the warm season from April to September regarding their ability to reproduce sub-daily and daily heavy precipitation statistics across the Nordic region. Both model setups are able to capture the daily heavy precipitation characteristics in the analyzed region. At sub-daily scale, HCLIM3 clearly improves the statistics of occurrence of the most intense heavy precipitation events, as well as the timing and amplitude of the diurnal cycle of these events compared to its forcing HCLIM12. Extreme value analysis shows that HCLIM3 provides added value in capturing sub-daily return levels compared to HCLIM12, which fails to produce the most extreme events. The results indicate clear benefits of the convection-permitting model in simulating heavy and extreme precipitation in the present-day climate, therefore, offering a motivating way forward to investigate the climate change impacts in the region.


Sign in / Sign up

Export Citation Format

Share Document