grid mesh
Recently Published Documents


TOTAL DOCUMENTS

60
(FIVE YEARS 10)

H-INDEX

10
(FIVE YEARS 2)

MAUSAM ◽  
2022 ◽  
Vol 46 (3) ◽  
pp. 307-312
Author(s):  
O. P. SINGH

ABSTRACT. Utilizing marine meteorological data the values of 1 latent heat flux, sea surface temperature (SST) and sea minus air temperature have been computed on a grid mesh of 5° over the Bay of Bengal during September month of the contrasting Winter monsoon years 1987 and 1988. It has been found that the good winter monsoon of 1987 followed (I) higher SSTs over western Bay of Bengal; (ii) very high evaporation rate over the sea area bounded by 10°.20°N. 80°.90oE and (iii) instability in the surface layer over north and adjoining central Bay of Bengal, whereas, the bad winter monsoon of 1988 followed (i) lower SSTs over western Bay of Bengal; (ii) very low evaporation rate over the area I0°.20oN, 80°.90oE and (iii) stability in the surface layer over north and adjoining central Bay of Bengal.    


MAUSAM ◽  
2021 ◽  
Vol 47 (1) ◽  
pp. 1-20
Author(s):  
J.C. MANDAL

ABSTRACT .A three-layer three-dimensional, triply-nested primitive equation model. suitable to simulate tropical storm, has been designed. A grid telescopic technique has been used with a fine grid mesh of 18 km grid length in the centre which is surrounded by a medium mesh of 54 km grid length; this is again surrounded by a course grid mesh of 162 km grid length. Each mesh consists of 32 X 32 array of momentum points enclosing 31 X 31 array of mass points. The variables are staggered in space which reduces the amount of averaging to a minimum and hence improves accuracy. To suppress non-linear instability an improved finite difference scheme has been applied. A two-way interaction method has been adopt to match the solutions between grids of different lengths. To increase the time step for integration, a semi-implicit scheme has been used. The speed of the solution of the system of Helmholtz equations arising out of semi-implicit scheme has been appreciably increased by devising an iterative method. To examine the role of surface friction as postulated by Yamasaki (1977) and forced subsidence as hypothesized by Arnold (1977), Gray (1977) and Yanai (1961) at the initial stage of development of a tropical storm. numerical experiments have been accomplished with this model varying coefficient of surface drag. and specifying heat around the centre of the to disturbance which is considered as the effect of forced subsidence through an analytical function similar to one used by Harrison (1973). The integration was started from a weak barotropic vortex in &r8dient balance en and continued for 48 hours in two cases and 60 hours in one case. It is observed that surface friction may not be an essential factor at the initial stage of development of tropical storm when the vortex is weak. On the  other  hand, initial development could be initiated by forced subsidence. But in the subsequent stage, surface friction plays an important role to induce mass convergence in the boundary layer and to reduce horizontal of the disturbance. This preliminary experiment has yielded smooth and encouraging results.    


2021 ◽  
Author(s):  
Zhengcai Zhao ◽  
Yao Li ◽  
Yucan Fu ◽  
Dawei Ding

Measurement path planning plays an essential role in on-machine measurement, which is often required to be time-saving and collision-free. This paper proposes a novel path planning methodology and develops an automatic collision avoidance strategy for measurement. Measurement points are generated by Contour section sampling (CSS), Grid mesh sampling (GMS), and Locally dense sampling (LDS) on the free-form surface. Afterwards, a shortest path algorithm (SPA) and a non-interference path algorithm (NIPA) are developed respectively. The simulations show that the proposed method can reduce the total inspection distance to nearly 7.82% than the original one. The presented path planning method can measure the surface of large aerospace parts directly by using a trigger probe.


2021 ◽  
Author(s):  
Fateme Hormozzade Ghalati ◽  
James A. Craven ◽  
Dariush Motazedian ◽  
Stephen E. Grasby ◽  
Eric Roots ◽  
...  

<p>Mount Meager is located ~150 km north of Vancouver, British Columbia Canada, and is a part of the Garibaldi volcanic belt. Exploration at Mount Meager for geothermal energy resources has been ongoing since 1974 and has shown, based on well data, that there is a permeable zone at a depth of 1200-1600 m and that the reservoir has a temperature of 270 °C near 2500 m depth. In this study, we have utilized recordings and related information from a new network of 84 audio-magnetotelluric (AMT) stations collected during the summer of 2019 plus 37 stations from previous studies to investigate the geothermal potential of the area around Mount Meager and Pylon peak. We used Phoenix Geophysics’ MTU-5C recording equipment and their proprietary software for data processing, separating extensive noise from the signal, to calculate the components of the natural electrical and magnetic signals in the frequency domain. After manual processing and editing, the data showed good quality in the frequency range of 1 to 1000 Hz. The ModEM inversion algorithm (Egbert and Kelbert, 2012) was then used to model the data. Modelling started using a coarse grid mesh with different starting resistivities, and then a finer grid size and topography was added to refine the model. The preliminary result of this 3D inversion defines the shape and location of conductors in the study area. The results show a conductor at a depth 2000 m located to the southwest of Mount Meager. Comparison of the 3D model and the geological setting of the area demonstrated that this conductor shallows toward the southern portion of the No-good Fault.</p>


2020 ◽  
Vol 31 (5) ◽  
pp. 1201-1206 ◽  
Author(s):  
Muhammad Waqas ◽  
Patrick Mountapmbeme Kouotou ◽  
Achraf El Kasmi ◽  
Yu Wang ◽  
Zhen-Yu Tian

2020 ◽  
Vol 10 (7) ◽  
pp. 2582 ◽  
Author(s):  
Shidian Ma ◽  
Zhongxu Jiang ◽  
Haobin Jiang ◽  
Mu Han ◽  
Chenxu Li

The accuracy of automated parking technology that uses ultrasonic radar or camera vision for obstacles and parking space identification can easily be affected by the surrounding environment especially when the color of the obstacles is similar to the ground. Additionally, this type of system cannot recognize the size of the obstacles detected. This paper proposes a method to identify parking spaces and obstacles based on visual sensor and laser device recognition methods by installing a laser transmitter on the car. The laser transmitter produces a checkerboard-shaped laser grid (mesh), which varies with the condition encountered on the ground, which is then captured by the camera and taken as the region of interest for the necessary image processing. The experimental results show that this method can effectively identify obstacles as well as their size and parking spaces even when the obstacles and the background have a similar color compared to when only using sensors or cameras alone.


2020 ◽  
Author(s):  
Erika Toivonen ◽  
Danijel Belušić ◽  
Emma Dybro Thomassen ◽  
Peter Berg ◽  
Ole Bøssing Christensen ◽  
...  

<p>Extreme precipitation events have a major impact upon our society. Although many studies have indicated that it is likely that the frequency of such events will increase in a warmer climate, little has been done to assess changes in extreme precipitation at a sub-daily scale. Recently, there is more and more evidence that <span>high-resolution convection-permitting models </span><span>(CPMs)</span> (grid-mesh typically < 4 km) can represent especially short-duration precipitation extremes more accurately when compared with coarser-resolution <span>regional climate model</span><span>s </span><span>(RCMs)</span><span>.</span></p><p>This study investigates sub-daily and daily precipitation characteristics based on hourly <span>output data from the HARMONIE-Climate model </span>at 3-km and 12-km grid-mesh resolution over the Nordic region between 1998 and 2018. The RCM modelling chain uses the ERA-Interim reanalysis to drive a 12-km grid-mesh simulation which is further downscaled to 3-km grid-mesh resolution using a non-hydrostatic model set-up.</p><p>The statistical properties of the modeled extreme precipitation are compared to several sub-daily and daily observational products, including gridded and in-situ gauge data, from April to September. We investigate the skill of the model to represent different aspects of the frequency and intensity of extreme precipitation as well as intensity–duration–frequency (IDF) curves that are commonly used to investigate short duration extremes from an urban planning perspective. The high grid resolution combined with the 20-year-long simulation period allows for a robust assessment at a climatological time scale <span>and enables us to examine the added value of high-resolution </span><span>CPM</span><span> in reproducing precipitation extremes over the Nordic </span><span>region</span><span>. </span><span>Based on the tentative results, the high-resolution CPM can realistically capture the </span><span>characteristics </span><span>of precipitation extremes, </span><span>for instance, </span><span>in terms of improved diurnal cycle and maximum intensities of sub-daily precipitation.</span></p>


Author(s):  
F.P. Madrin ◽  
H. Widyaputera ◽  
E. Supriyanto ◽  
Z.A. Malek ◽  
M.A.A. Taib ◽  
...  

Ground Potential Rise (GPR) caused by lightning strike is a potential hazard for electrical equipment inside an oil and gas refinery plant. In order to mitigate the risk, horizontal grounding grid is applied. The best mitigation is to install a grounding grid with mesh size as small as possible. This condition requires a high cost. In order to obtain the optimal mesh size, a series of simulation of a grounding grid with mesh size variations on GPR caused by lightning strike has been carried out. CDEGS software was used to observe the GPR with various mesh size from 6.5 x 6.5 m to 20 x 20 m. Simulation results show that the maximum transient GPR rises as the grounding grid mesh size is increased, while the GPR distribution throughout the grounding grid area does not change much for different mesh sizes. In the other hand, decreasing the grid size would mean that more conductors are required, hence the cost would increase accordingly. The result shows that grid sizes from 6.5 x 6.5 m up to 20 x 20 m have no significant difference in term of GPR. In term of cost, 10 x 10 m does not show significant difference with 20 x 20 m, on the other hand, there is a significant difference for grid sizes 1 x 1 m to 10 x 10 m. From the results, grid sizes between 10 x 10 m up to 20 x 20 m are still applicable as stated in Petronas Technical. To comply with proper GPR value, additional protection devices are needed to protect the electrical equipment from potential damage.Keywords –GPR, grounding grid, mesh size


Sign in / Sign up

Export Citation Format

Share Document