scholarly journals Subsidence activity maps derived from DInSAR data: Orihuela case study

2013 ◽  
Vol 1 (5) ◽  
pp. 5365-5402 ◽  
Author(s):  
M. P. Sanabria ◽  
C. Guardiola-Albert ◽  
R. Tomás ◽  
G. Herrera ◽  
A. Prieto ◽  
...  

Abstract. A new methodology is proposed to produce subsidence activity maps based on the geostatistical analysis of persistent scatterer interferometry (PSI) data. PSI displacement measurements are interpolated based on Conditional Gaussian Simulation (CGS) to calculate multiple equiprobable realizations of subsidence. The result from this process is a series of interpolated subsidence values, with an estimation of the spatial uncertainty and a confidence level on the interpolation. These maps complement the PSI displacement map, improving the identification of wide subsiding areas at regional scale. At local scale, they can be used to identify buildings susceptible to suffer subsidence related damages. In order to do so, it is necessary to calculate the maximum differential settlement and the maximum angular distortion for each building of the study area. Based on PSI derived parameters those buildings in which serviceability limit state has been exceeded, and where in situ forensic analysis should be made, can be automatically identified. This methodology has been tested in Orihuela City (SE Spain) for the study of historical buildings, damaged during the last two decades by subsidence due to aquifer overexploitation.

2014 ◽  
Vol 14 (5) ◽  
pp. 1341-1360 ◽  
Author(s):  
M. P. Sanabria ◽  
C. Guardiola-Albert ◽  
R. Tomás ◽  
G. Herrera ◽  
A. Prieto ◽  
...  

Abstract. A new methodology is proposed to produce subsidence activity maps based on the geostatistical analysis of persistent scatterer interferometry (PSI) data. PSI displacement measurements are interpolated based on conditional Sequential Gaussian Simulation (SGS) to calculate multiple equiprobable realizations of subsidence. The result from this process is a series of interpolated subsidence values, with an estimation of the spatial variability and a confidence level on the interpolation. These maps complement the PSI displacement map, improving the identification of wide subsiding areas at a regional scale. At a local scale, they can be used to identify buildings susceptible to suffer subsidence related damages. In order to do so, it is necessary to calculate the maximum differential settlement and the maximum angular distortion for each building of the study area. Based on PSI-derived parameters those buildings in which the serviceability limit state has been exceeded, and where in situ forensic analysis should be made, can be automatically identified. This methodology has been tested in the city of Orihuela (SE Spain) for the study of historical buildings damaged during the last two decades by subsidence due to aquifer overexploitation. The qualitative evaluation of the results from the methodology carried out in buildings where damages have been reported shows a success rate of 100%.


2019 ◽  
Vol 11 (14) ◽  
pp. 1675 ◽  
Author(s):  
Tomás ◽  
Pagán ◽  
Navarro ◽  
Cano ◽  
Pastor ◽  
...  

This work describes a new procedure aimed to semi-automatically identify clusters of active persistent scatterers and preliminarily associate them with different potential types of deformational processes over wide areas. This procedure consists of three main modules: (i) ADAfinder, aimed at the detection of Active Deformation Areas (ADA) using Persistent Scatterer Interferometry (PSI) data; (ii) LOS2HV, focused on the decomposition of Line Of Sight (LOS) displacements from ascending and descending PSI datasets into vertical and east-west components; iii) ADAclassifier, that semi-automatically categorizes each ADA into potential deformational processes using the outputs derived from (i) and (ii), as well as ancillary external information. The proposed procedure enables infrastructures management authorities to identify, classify, monitor and categorize the most critical deformations measured by PSI techniques in order to provide the capacity for implementing prevention and mitigation actions over wide areas against geological threats. Zeri, Campiglia Marittima–Suvereto and Abbadia San Salvatore (Tuscany, central Italy) are used as case studies for illustrating the developed methodology. Three PSI datasets derived from the Sentinel-1 constellation have been used, jointly with the geological map of Italy (scale 1:50,000), the updated Italian landslide and land subsidence maps (scale 1:25,000), a 25 m grid Digital Elevation Model, and a cadastral vector map (scale 1:5,000). The application to these cases of the proposed workflow demonstrates its capability to quickly process wide areas in very short times and a high compatibility with Geographical Information System (GIS) environments for data visualization and representation. The derived products are of key interest for infrastructures and land management as well as decision-making at a regional scale.


2019 ◽  
Vol 11 (23) ◽  
pp. 2822 ◽  
Author(s):  
Fabio Matano

The high levels of geo-hydrological, seismic, and volcanic hazards in the Campania region prompted full data collection from C-band satellites ERS-1/2, ENVISAT, and RADARSAT within regional (TELLUS) and national (PST-A) projects. The quantitative analysis, interpretation, and classification of natural and human-induced slow-rate ground deformations across a span of two decades (1992–2010) was performed at regional scale (Campania, Italy) by using interferometric archive datasets, based on the Persistent Scatterer Interferometry approach. As radar satellite sensors have a side-looking view, the post-processing of the interferometric datasets allows for the evaluation of two spatial components (vertical and E-W horizontal ones) of ground deformation, while the N-S horizontal component cannot be detected. The ground deformation components have been analyzed across 89.5% of the Campania territory within a variety of environmental, topographical, and geological conditions. The main part (57%) of the regional territory was characterized during 1992–2010 by stable areas, where SAR signals do not have recorded significant horizontal and vertical components of ground deformation with an average annual rate greater than +1 mm/yr or lower than −1 mm/yr. Within the deforming areas, the coastal plains are characterized by widespread and continuous strong subsidence signals due to sediment compaction locally enhanced by human activity, while the inner plain sectors show mainly scattered spots with locally high subsidence in correspondence of urban areas, sinkholes, and groundwater withdrawals. The volcanic sectors show interplaying horizontal and vertical trends due to volcano-tectonic processes, while in the hilly and mountain inner sectors the ground deformation is mainly controlled by large-scale tectonic activity and by local landslide activity. The groundwater-related deformation is the dominant cause of human-caused ground deformation. The results confirm the importance of using Persistent Scatterer Interferometry data for a comprehensive understanding of rates and patterns of recent ground deformation at regional scale also within tectonically active areas as in Campania region.


2018 ◽  
Vol 10 (12) ◽  
pp. 1880 ◽  
Author(s):  
Andre Kalia

Landslides are a major natural hazard which can cause significant damage, economic loss, and loss of life. Between the years of 2004 and 2016, 55,997 fatalities caused by landslides were reported worldwide. Up-to-date, reliable, and comprehensive landslide inventories are mandatory for optimized disaster risk reduction (DRR). Various stakeholders recognize the potential of Earth observation techniques for an optimized DRR, and one example of this is the Sendai Framework for DRR, 2015–2030. Some of the major benefits of spaceborne interferometric Synthetic Aperture Radar (SAR) techniques, compared to terrestrial techniques, are the large spatial coverage, high temporal resolution, and cost effectiveness. Nevertheless, SAR data availability is a precondition for its operational use. From this perspective, Copernicus Sentinel-1 is a game changer, ensuring SAR data availability for almost the entire world, at least until 2030. This paper focuses on a Sentinel-1-based Persistent Scatterer Interferometry (PSI) post-processing workflow to classify landslide activity on a regional scale, to update existing landslide inventories a priori. Before classification, a Line-of-Sight (LOS) velocity conversion to slope velocity and a cluster analysis was performed. Afterwards, the classification was achieved by applying a fixed velocity threshold. The results are verified through the Global Positioning System (GPS) survey and a landslide hazard indication map.


2014 ◽  
Vol 6 (11) ◽  
pp. 10510-10522 ◽  
Author(s):  
Ascanio Rosi ◽  
Andrea Agostini ◽  
Veronica Tofani ◽  
Nicola Casagli

Geomatics ◽  
2020 ◽  
Vol 1 (1) ◽  
pp. 3-17
Author(s):  
Ambujendran Rajaneesh ◽  
Natarajan Logesh ◽  
Chakrapani Lekha Vishnu ◽  
El Hachemi Bouali ◽  
Thomas Oommen ◽  
...  

Persistent Scatterer Interferometry (PSI) techniques are now well established and accepted for monitoring ground displacements. The presence of shallow-seated landslides, ubiquitous phenomena in the tropics, offers an opportunity to monitor and map these hazards using PSI at the regional scale. Thus, the Western Ghats of India, experiencing a tropical climate and in a topographically complex region of the world, provides an ideal study site to test the efficacy of landslide detection with PSI. The biggest challenge in using the PSI technique in tropical regions is the additional noise in data due to vegetation. In this study, we filtered these noises by utilizing the 95-percentile of the highest coherence data, which also reduced the redundancy of the PSI points. The study examined 12 landslides that occurred within one of the three temporal categories grouped as Group 1, Group 2, and Group 3, categorized in relation to PSI monitoring periods, which was also further classified into east- and west-facing landslides. The Synthetic Aperture Radar (SAR) data is in descending mode, and, therefore, the east-facing landslides are characterized by positive deformation velocity values, whereas the west-facing landslides have negative deformation values. Further, the landslide-prone areas, delineated using the conventional factor of safety (FS), were refined and mapped using PSI velocity values. The combination of PSI with the conventional FS approach helped to identify exclusive zones prone to landslides. The main aim of such an attempt is to identify critical areas in the unstable category in the map prepared using FS and prioritizing the mitigation measures, and to develop a road map for any developmental activities. The approach also helps to increase confidence in the susceptibility mapping and reduce false alarms.


Sign in / Sign up

Export Citation Format

Share Document