scholarly journals Application of a fast and efficient algorithm to assess landslide prone areas in sensitive clays – toward landslide susceptibility assessment, Sweden

2014 ◽  
Vol 2 (12) ◽  
pp. 7773-7806
Author(s):  
C. Melchiorre ◽  
A. Tryggvason

Abstract. This work deals with susceptibility assessment in sensitive clays at national scale. The proposed methodology is based on a procedure which uses soil data and Digital Elevation Models to detect areas prone to landslides and has been applied in Sweden for several years. Specifically, we tested an algorithm which is able to detect soil and slope criteria guaranteeing a faster execution compared to other implementations and an efficient filtering procedure. The adopted computational solution allows using local information on depth to bedrock and several cross-sectional angle thresholds, and therefore opens up new possibilities to improve landslide susceptibility assessment. We tested the algorithm in the Göta River valley and evaluated the effect of filtering, depth to bedrock and cross-sectional angle thresholds on model performance. The thresholds were derived by analysing the relationship between landslide scarps and the Quick Clay Susceptibility Index (QCSI). The results gave us important insights on how to implement the filtering procedure, the use of depth to bedrock and the derived cross-sectional angle thresholds in landslide susceptibility assessment.

2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Binh Thai Pham ◽  
Tran Van Phong ◽  
Mohammadtaghi Avand ◽  
Nadhir Al-Ansari ◽  
Sushant K. Singh ◽  
...  

In this study, the main aim is to improve performance of the voting feature intervals (VFIs), which is one of the most effective machine learning models, using two robust ensemble techniques, namely, AdaBoost and MultiBoost for landslide susceptibility assessment and prediction. For this, two hybrid models, namely, AdaBoost-based Voting Feature Intervals (ABVFIs) and MultiBoost-based Voting Feature Intervals (MBVFIs) were developed and validated using landslide data collected from one of the landslide affected districts of Vietnam, namely, Muong Lay. Quantitative validation methods including area under the ROC curve (AUC) were used to evaluate model performance. The results indicated that both the newly developed ensemble models ABVFI (AUC = 0.859) and MBVFI (AUC = 0.839) outperformed the single VFI (AUC = 0.824) model. Thus, ensemble framework-based VFI algorithms can be used for the accurate spatial prediction of landslides, which can also be applied in other landslide prone regions of the world. Landslide susceptibility maps developed by ensemble VFI models can be used for better landslide prevention and risk management of the area.


2020 ◽  
Vol 12 (17) ◽  
pp. 2718 ◽  
Author(s):  
Yasin Wahid Rabby ◽  
Asif Ishtiaque ◽  
Md. Shahinoor Rahman

Digital elevation models (DEMs) are the most obvious data sources in landslide susceptibility assessment. Many landslide casual factors are often generated from DEMs. Most studies on landslide susceptibility assessments rely on freely available DEMs. However, very little is known about the performance of different DEMs with varying spatial resolutions on the accurate assessment of landslide susceptibility. This study compared the performance of four different DEMs including 30 m Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global Digital Elevation Model (GDEM), 30–90 m Shuttle Radar Topographic Mission (SRTM), 12.5 m Advanced Land Observation Satellite (ALOS) Phased Array Type L band Synthetic Aperture Radar (PALSAR), and 25 m Survey of Bangladesh (SOB) DEM in landslide susceptibility assessment in the Rangamati district in Bangladesh. This study used three different landslide susceptibility assessment techniques: modified frequency ratio (bivariate model), logistic regression (multivariate model), and random forest (machine-learning model). This study explored two scenarios of landslide susceptibility assessment: using only DEM-derived causal factors and using both DEM-derived factors as well as other common factors. The success and prediction rate curves indicate that the SRTM DEM provides the highest accuracies for the bivariate model in both scenarios. Results also reveal that the ALOS PALSAR DEM shows the best performance in landslide susceptibility mapping using the logistics regression and the random forest models. A relatively finer resolution DEM, the SOB DEM, shows the lowest accuracies compared to other DEMs for all models and scenarios. It can also be noted that the performance of all DEMs except the SOB DEM is close (72%–84%) considering the success and prediction accuracies. Therefore, anyone of the three global DEMs: ASTER, SRTM, and ALOS PALSAR can be used for landslide susceptibility mapping in the study area.


2021 ◽  
Author(s):  
Cahio Guimarães Seabra Eiras ◽  
Juliana Ribeiro Gonçalves de Souza ◽  
Renata Delicio Andrade de Freitas ◽  
César Falcão Barella ◽  
Tiago Martins Pereira

Geosciences ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 493 ◽  
Author(s):  
Vincenzo Marsala ◽  
Alberto Galli ◽  
Giorgio Paglia ◽  
Enrico Miccadei

This work is focused on the landslide susceptibility assessment, applied to Mauritius Island. The study area is a volcanic island located in the western part of the Indian Ocean and it is characterized by a plateau-like morphology interrupted by three rugged mountain areas. The island is severely affected by geo-hydrological hazards, generally triggered by tropical storms and cyclones. The landslide susceptibility analysis was performed through an integrated approach based on morphometric analysis and preliminary Geographical Information System (GIS)-based techniques, supported by photogeological analysis and geomorphological field mapping. The analysis was completed following a mixed heuristic and statistical approach, integrated using GIS technology. This approach led to the identification of eight landslide controlling factors. Hence, each factor was evaluated by assigning appropriate expert-based weights and analyzed for the construction of thematic maps. Finally, all the collected data were mapped through a cartographic overlay process in order to realize a new zonation of landslide susceptibility. The resulting map was grouped into four landslide susceptibility classes: low, medium, high, and very high. This work provides a scientific basis that could be effectively applied in other tropical areas showing similar climatic and geomorphological features, in order to develop sustainable territorial planning, emergency management, and loss-reduction measures.


2015 ◽  
Vol 15 (12) ◽  
pp. 2703-2713 ◽  
Author(s):  
C. Melchiorre ◽  
A. Tryggvason

Abstract. We refine and test an algorithm for landslide susceptibility assessment in areas with sensitive clays. The algorithm uses soil data and digital elevation models to identify areas which may be prone to landslides and has been applied in Sweden for several years. The algorithm is very computationally efficient and includes an intelligent filtering procedure for identifying and removing small-scale artifacts in the hazard maps produced. Where information on bedrock depth is available, this can be included in the analysis, as can information on several soil-type-based cross-sectional angle thresholds for slip. We evaluate how processing choices such as of filtering parameters, local cross-sectional angle thresholds, and inclusion of bedrock depth information affect model performance. The specific cross-sectional angle thresholds used were derived by analyzing the relationship between landslide scarps and the quick-clay susceptibility index (QCSI). We tested the algorithm in the Göta River valley. Several different verification measures were used to compare results with observed landslides and thereby identify the optimal algorithm parameters. Our results show that even though a relationship between the cross-sectional angle threshold and the QCSI could be established, no significant improvement of the overall modeling performance could be achieved by using these geographically specific, soil-based thresholds. Our results indicate that lowering the cross-sectional angle threshold from 1 : 10 (the general value used in Sweden) to 1 : 13 improves results slightly. We also show that an application of the automatic filtering procedure that removes areas initially classified as prone to landslides not only removes artifacts and makes the maps visually more appealing, but it also improves the model performance.


Sign in / Sign up

Export Citation Format

Share Document