scholarly journals Boussinesq modeling of surface waves due to underwater landslides

2013 ◽  
Vol 20 (3) ◽  
pp. 267-285 ◽  
Author(s):  
D. Dutykh ◽  
H. Kalisch

Abstract. Consideration is given to the influence of an underwater landslide on waves at the surface of a shallow body of fluid. The equations of motion that govern the evolution of the barycenter of the landslide mass include various dissipative effects due to bottom friction, internal energy dissipation, and viscous drag. The surface waves are studied in the Boussinesq scaling, with time-dependent bathymetry. A numerical model for the Boussinesq equations is introduced that is able to handle time-dependent bottom topography, and the equations of motion for the landslide and surface waves are solved simultaneously. The numerical solver for the Boussinesq equations can also be restricted to implement a shallow-water solver, and the shallow-water and Boussinesq configurations are compared. A particular bathymetry is chosen to illustrate the general method, and it is found that the Boussinesq system predicts larger wave run-up than the shallow-water theory in the example treated in this paper. It is also found that the finite fluid domain has a significant impact on the behavior of the wave run-up.

Author(s):  
Byeong W. Park ◽  
Rae H. Yuck ◽  
Seok K. Cho ◽  
Hang S. Choi

In this study, firstly nonlinear waves in shallow water were simulated by using the Boussinesq equations. The simulated waves represented well the wave deformations such as shoaling and refraction as well as non-linear wave interactions among wave components as they approach coastal region from far field. The velocity components of the simulated waves at an arbitrary location in the fluid domain can be computed most effectively by introducing the so-called utility velocity. By taking the deformed wave field into account, the motion response of a moored floating barge was analyzed. The wave excitation and radiation force were estimated by the Constant Panel Method (CPM) based on linear potential theory. In order to estimate the wave excitation force including shallow water effects, the wave height and the wave velocity components obtained from the Boussinesq simulation were used. This approach used to estimate the wave excitation force including shallow water effects is herein referred to as Hybrid Boussinesq-CPM. An example calculation was made for the Pinkster barge, which is supposed to be located in a specific bottom topography and moored by the Tower Yoke Mooring System. The results were compared with those obtained for the equivalent constant water depth condition. The comparison showed that the motion responses obtained by the Hybrid model were larger than those for the even bottom case. In particular, the horizontal surge motion was significantly enlarged because of two facts: the wave deformation due to the bottom topography and the low frequency waves caused by nonlinear wave-wave interactions. The enlarged horizontal surge motion is important for mooring design in shallow water.


2021 ◽  
Vol 9 (1) ◽  
pp. 76
Author(s):  
Duoc Nguyen ◽  
Niels Jacobsen ◽  
Dano Roelvink

This study aims at developing a new set of equations of mean motion in the presence of surface waves, which is practically applicable from deep water to the coastal zone, estuaries, and outflow areas. The generalized Lagrangian mean (GLM) method is employed to derive a set of quasi-Eulerian mean three-dimensional equations of motion, where effects of the waves are included through source terms. The obtained equations are expressed to the second-order of wave amplitude. Whereas the classical Eulerian-mean equations of motion are only applicable below the wave trough, the new equations are valid until the mean water surface even in the presence of finite-amplitude surface waves. A two-dimensional numerical model (2DV model) is developed to validate the new set of equations of motion. The 2DV model passes the test of steady monochromatic waves propagating over a slope without dissipation (adiabatic condition). This is a primary test for equations of mean motion with a known analytical solution. In addition to this, experimental data for the interaction between random waves and a mean current in both non-breaking and breaking waves are employed to validate the 2DV model. As shown by this successful implementation and validation, the implementation of these equations in any 3D model code is straightforward and may be expected to provide consistent results from deep water to the surf zone, under both weak and strong ambient currents.


2000 ◽  
Vol 24 (10) ◽  
pp. 649-661 ◽  
Author(s):  
Mohamed Atef Helal

This paper is mainly concerned with the motion of an incompressible fluid in a slowly rotating rectangular basin. The equations of motion of such a problem with its boundary conditions are reduced to a system of nonlinear equations, which is to be solved by applying the shallow water approximation theory. Each unknown of the problem is expanded asymptotically in terms of the small parameterϵwhich generally depends on some intrinsic quantities of the problem of study. For each order of approximation, the nonlinear system of equations is presented successively. It is worthy to note that such a study has useful applications in the oceanography.


2012 ◽  
Vol 695 ◽  
pp. 341-365 ◽  
Author(s):  
Philip L.-F. Liu ◽  
Xiaoming Wang

AbstractIn this paper, a multi-layer model is developed for the purpose of studying nonlinear internal wave propagation in shallow water. The methodology employed in constructing the multi-layer model is similar to that used in deriving Boussinesq-type equations for surface gravity waves. It can also be viewed as an extension of the two-layer model developed by Choi & Camassa. The multi-layer model approximates the continuous density stratification by an $N$-layer fluid system in which a constant density is assumed in each layer. This allows the model to investigate higher-mode internal waves. Furthermore, the model is capable of simulating large-amplitude internal waves up to the breaking point. However, the model is limited by the assumption that the total water depth is shallow in comparison with the wavelength of interest. Furthermore, the vertical vorticity must vanish, while the horizontal vorticity components are weak. Numerical examples for strongly nonlinear waves are compared with laboratory data and other numerical studies in a two-layer fluid system. Good agreement is observed. The generation and propagation of mode-1 and mode-2 internal waves and their interactions with bottom topography are also investigated.


Author(s):  
K. A. Belibassakis ◽  
G. A. Athanassoulis

A coupled-mode model is developed and applied to the transformation and run-up of dispersive water waves on plane beaches. The present work is based on the consistent coupled-mode theory for the propagation of water waves in variable bathymetry regions, developed by Athanassoulis & Belibassakis (1999) and extended to 3D by Belibassakis et al (2001), which is suitably modified to apply to a uniform plane beach. The key feature of the coupled-mode theory is a complete modal-type expansion of the wave potential, containing both propagating and evanescent modes, being able to consistently satisfy the Neumann boundary condition on the sloping bottom. Thus, the present approach extends previous works based on the modified mild-slope equation in conjunction with analytical solution of the linearised shallow water equations, see, e.g., Massel & Pelinovsky (2001). Numerical results concerning non-breaking waves on plane beaches are presented and compared with exact analytical solutions; see, e.g., Wehausen & Laitone (1960, Sec. 18). Also, numerical results are presented concerning the run-up of non-breaking solitary waves on plane beaches and compared with the ones obtained by the solution of the shallow-water wave equations, Synolakis (1987), Li & Raichlen (2002), and experimental data, Synolakis (1987).


1985 ◽  
Vol 150 ◽  
pp. 311-327 ◽  
Author(s):  
A. S. Berman ◽  
T. S. Lundgren ◽  
A. Cheng

Experimental and analytical results are presented for the self-excited oscillations that occur in a partially filled centrifuge when centrifugal forces interact with shallow-water waves. Periodic and aperiodic modulations of the basic whirl phenomena are both observed and calculated. The surface waves are found to be hydraulic jumps, undular bores or solitary waves.


Sign in / Sign up

Export Citation Format

Share Document