scholarly journals Meanders and eddy formation by a buoyant coastal current flowing over a sloping topography

Ocean Science ◽  
2017 ◽  
Vol 13 (6) ◽  
pp. 905-923 ◽  
Author(s):  
Laura Cimoli ◽  
Alexandre Stegner ◽  
Guillaume Roullet

Abstract. This study investigates the linear and non-linear instability of a buoyant coastal current flowing along a sloping topography. In fact, the bathymetry strongly impacts the formation of meanders or eddies and leads to different dynamical regimes that can both enhance or prevent the cross-shore transport. We use the Regional Ocean Modeling System (ROMS) to run simulations in an idealized channel configuration, using a fixed coastal current structure and testing its unstable evolution for various depths and topographic slopes. The experiments are integrated beyond the linear stage of the instability, since our focus is on the non-linear end state, namely the formation of coastal eddies or meanders, to classify the dynamical regimes. We find three non-linear end states, whose properties cannot be deduced solely from the linear instability analysis. They correspond to a quasi-stable coastal current, the propagation of coastal meanders, and the formation of coherent eddies. We show that the topographic parameter Tp, defined as the ratio of the topographic Rossby wave speed over the current speed, plays a key role in controlling the amplitude of the unstable cross-shore perturbations. This result emphasizes the limitations of linear stability analysis to predict the formation of coastal eddies, because it does not account for the non-linear saturation of the cross-shore perturbations, which is predominant for large negative Tp values. We show that a second dimensionless parameter, the vertical aspect ratio γ, controls the transition from meanders to coherent eddies. We suggest the use of the parameter space (Tp, γ) to describe the emergence of coastal eddies or meanders from an unstable buoyant current. By knowing the values of Tp and γ for an observed flow, which can be calculated from hydrological sections, we can identify which non-linear end state characterizes that flow – namely if it is quasi-stable, meanders, or forms eddies.

2017 ◽  
Author(s):  
Laura Cimoli ◽  
Alexandre Stegner ◽  
Guillaume Roullet

Abstract. This study investigates the linear and non-linear instability of a buoyant coastal current flowing along a sloping topography. In fact, the bathymetry strongly impacts the formation of meanders or eddies and leads to different dynamical regimes that can both enhance or prevent the cross-shore transport. We use the Regional Ocean Modeling System (ROMS) to run simulations in an idealized channel configuration, using a fixed coastal current structure and testing its unstable evolution for various depths and topographic slopes. The experiments are integrated beyond the linear stage of the instability, since our focus is on the non-linear end state, namely the formation of coastal eddies or meanders, to classify the dynamical regimes. We find three non-linear end states, whose properties cannot be deduced solely from the linear instability analysis. They correspond to a quasi-stable coastal current, the propagation of coastal meanders, and the formation of coherent eddies. We show that the topographic parameter, Tp, defined as the ratio of the topographic Rossby wave speed over the current speed, plays a key role in controlling the amplitude of the unstable cross-shore perturbations. This result emphasizes the limitations of linear stability analysis to predict the formation of coastal eddies, because it does not account for the non-linear saturation of the cross-shore perturbations, which is predominant for large negative Tp values. We show that a second dimensionless parameter, the vertical aspect ratio γ, controls the transition from meanders to coherent eddies. We suggest the use of the parameter space (Tp, γ) to describe the emergence of coastal eddies or meanders from an unstable buoyant current. By knowing the values of Tp and γ for an observed flow, which can be calculated from hydrological sections, we can identify which non-linear end states characterizes that flow, namely if it is quasi-stable, meanders, or forms eddies.


2014 ◽  
Vol 44 (11) ◽  
pp. 2951-2971 ◽  
Author(s):  
Shih-Nan Chen

Abstract A recent numerical study by Isobe showed that imposing alongshore tidal forcing on buoyant coastal discharge enhances the net freshwater transport in the coastal currents. The mechanisms for this transport enhancement are studied using a three-dimensional, primitive equation ocean model [Regional Ocean Modeling System (ROMS)]. Lagrangian drifters are used to trace the freshwater transport paths. It is found that the river plume bulge circulation largely follows the rigid-body motion (i.e., constant vorticity). The buoyant fluid near the bulge’s outer edge is thinner and faster, behaving as a baroclinic jet. The bulge currents then split after impinging on the coast. The outer fluid feeds the downshelf-flowing coastal currents, while the inner fluid recirculates to form the bulge. The coastal current transport estimated from the present and prior studies corresponds well to a baroclinic jet theory, with the incident angle of bulge currents at the coast being a key parameter. Without tides, the bulge is approximately circular. The incident angle measured with respect to the cross-shore axis is small. With tides, the convergence of tidal momentum fluxes near the upshelf plume front leads to a positive pressure anomaly, which acts to compress the bulge shoreward. As a result, the incident angle increases, which in turn enhances the downshelf momentum input, thus increasing the freshwater transport in the coastal currents. Finally, the parameter space for coastal current transport in the presence of tidal forcing is explored with a conceptual model. A few observational examples are given.


2013 ◽  
Vol 43 (12) ◽  
pp. 2571-2587 ◽  
Author(s):  
Joseph T. Jurisa ◽  
Robert J. Chant

Abstract Idealized numerical simulations utilizing the Regional Ocean Modeling System (ROMS) are carried out to examine the response of buoyant river plume systems to offshore-directed wind stresses. It is found that after a few inertial periods of wind forcing the plume becomes detached from the coast and reaches a steady state in terms of the plume’s offshore position, width, and plume-averaged depth, salinity, and velocity. The steady-state offshore position of the plume is a balance between the cross-shore advection driven by the estuarine outflow and the alongshore advection driven by the Ekman velocities, and is described using the ratio of the outflow Froude number and the plume Froude number. The steady-state salinity structure is maintained by a balance between the cross-shore advection of salt creating stratification, the turbulent vertical mixing, and the downstream transport of freshwater continually resetting the system. Plume mixing is also analyzed using a salinity coordinate system to track the changes in freshwater volume in salinity space and time. A dynamical plume region classification is developed with use of a Richardson number–based critical mixing salinity criterion in salinity space. This salinity class–based classification agrees well with a classification based on an alongshore analysis of the salt flux equation. For this classification the near field is dominated by large cross-shore fluxes and the midfield by a diminishing cross-shore salt flux, and in the far field there is a balance between the alongshore salt flux and turbulent mixing.


Sign in / Sign up

Export Citation Format

Share Document