Interactive comment on “On the deep convection events and Antarctic Bottom Water formation in ocean reanalysis products” by Wilton Aguiar et al.

2017 ◽  
Author(s):  
Anonymous
2017 ◽  
Author(s):  
Wilton Aguiar ◽  
Mauricio M. Mata ◽  
Rodrigo Kerr

Abstract. Deep convection in open ocean polynyas are common sources of error on the representation of Antarctic Bottom Water (AABW) formation in Ocean General Circulation Models. Even though those events are well described in non-assimilatory ocean simulations, recent appearance of open ocean polynya in Estimating the Circulation and Climate of the Ocean Phase II reanalysis product raises a question if this spurious event is also found in state-of-art reanalysis products. In order to answer this question, we evaluate how three recently released high-resolution ocean reanalysis form AABW in their simulations. We found that two of them (ECCO2 and SoSE) create AABW by open ocean deep convection events in Weddell Sea, showing that assimilation of sea ice has not been enough to avoid open ocean polynya appearance. The third reanalysis – My Ocean University Reading – actually creates AABW by a rather dynamically accurate mechanism, depicting both continental shelf convection, and exporting of Dense Shelf Water to open ocean. Although the accuracy of the AABW formation in this reanalysis allows an advance in represent this process, the differences found between the real ocean and the simulated one suggests that ocean reanalysis still need substantial improvements to accurately represent AABW formation.


Ocean Science ◽  
2021 ◽  
Vol 17 (1) ◽  
pp. 59-90
Author(s):  
Céline Heuzé

Abstract. Deep and bottom water formation are crucial components of the global ocean circulation, yet they were poorly represented in the previous generation of climate models. We here quantify biases in Antarctic Bottom Water (AABW) and North Atlantic Deep Water (NADW) formation, properties, transport, and global extent in 35 climate models that participated in the latest Climate Model Intercomparison Project (CMIP6). Several CMIP6 models are correctly forming AABW via shelf processes, but 28 models in the Southern Ocean and all 35 models in the North Atlantic form deep and bottom water via open-ocean deep convection too deeply, too often, and/or over too large an area. Models that convect the least form the most accurate AABW but the least accurate NADW. The four CESM2 models with their overflow parameterisation are among the most accurate models. In the Atlantic, the colder the AABW, the stronger the abyssal overturning at 30∘ S, and the further north the AABW layer extends. The saltier the NADW, the stronger the Atlantic Meridional Overturning Circulation (AMOC), and the further south the NADW layer extends. In the Indian and Pacific oceans in contrast, the fresher models are the ones which extend the furthest regardless of the strength of their abyssal overturning, most likely because they are also the models with the weakest fronts in the Antarctic Circumpolar Current. There are clear improvements since CMIP5: several CMIP6 models correctly represent or parameterise Antarctic shelf processes, fewer models exhibit Southern Ocean deep convection, more models convect at the right location in the Labrador Sea, bottom density biases are reduced, and abyssal overturning is more realistic. However, more improvements are required, e.g. by generalising the use of overflow parameterisations or by coupling to interactive ice sheet models, before deep and bottom water formation, and hence heat and carbon storage, are represented accurately.


2020 ◽  
Vol 13 (12) ◽  
pp. 780-786 ◽  
Author(s):  
Alessandro Silvano ◽  
Annie Foppert ◽  
Stephen R. Rintoul ◽  
Paul R. Holland ◽  
Takeshi Tamura ◽  
...  

2017 ◽  
Vol 32 (3) ◽  
pp. 304-317 ◽  
Author(s):  
Xiaoxia Huang ◽  
Michael Stärz ◽  
Karsten Gohl ◽  
Gregor Knorr ◽  
Gerrit Lohmann

2011 ◽  
Vol 58 (10) ◽  
pp. 1002-1018 ◽  
Author(s):  
Giorgio Budillon ◽  
Pasquale Castagno ◽  
Stefano Aliani ◽  
Giancarlo Spezie ◽  
Laurie Padman

2016 ◽  
Vol 7 (1) ◽  
Author(s):  
G. D. Williams ◽  
L. Herraiz-Borreguero ◽  
F. Roquet ◽  
T. Tamura ◽  
K. I. Ohshima ◽  
...  

Ocean Science ◽  
2017 ◽  
Vol 13 (6) ◽  
pp. 851-872 ◽  
Author(s):  
Wilton Aguiar ◽  
Mauricio M. Mata ◽  
Rodrigo Kerr

Abstract. Open ocean deep convection is a common source of error in the representation of Antarctic Bottom Water (AABW) formation in ocean general circulation models. Although those events are well described in non-assimilatory ocean simulations, the recent appearance of a massive open ocean polynya in the Estimating the Circulation and Climate of the Ocean Phase II reanalysis product (ECCO2) raises questions on which mechanisms are responsible for those spurious events and whether they are also present in other state-of-the-art assimilatory reanalysis products. To investigate this issue, we evaluate how three recently released high-resolution ocean reanalysis products form AABW in their simulations. We found that two of the products create AABW by open ocean deep convection events in the Weddell Sea that are triggered by the interaction of sea ice with the Warm Deep Water, which shows that the assimilation of sea ice is not enough to avoid the appearance of open ocean polynyas. The third reanalysis, My Ocean University Reading UR025.4, creates AABW using a rather dynamically accurate mechanism. The UR025.4 product depicts both continental shelf convection and the export of Dense Shelf Water to the open ocean. Although the accuracy of the AABW formation in this reanalysis product represents an advancement in the representation of the Southern Ocean dynamics, the differences between the real and simulated processes suggest that substantial improvements in the ocean reanalysis products are still needed to accurately represent AABW formation.


Sign in / Sign up

Export Citation Format

Share Document