scholarly journals Wind induced variability in the Northern Current (North-Western Mediterranean Sea) as depicted by a multi-platform observing system

2018 ◽  
Author(s):  
Maristella Berta ◽  
Lucio Bellomo ◽  
Annalisa Griffa ◽  
Marcello Magaldi ◽  
Anne Molcard ◽  
...  

Abstract. The variability and evolution of the Northern Current (NC) in the area off Toulon is studied for two weeks in December 2011 using data from a glider, a HF radar network, vessel surveys, a meteo station, and an atmospheric model. The NC variability is dominated by a synoptic response to wind events, even though a seasonal trend is also observed, transitioning from late summer to fall-winter conditions. With weak winds the current is mostly zonal and in geostrophic balance even at the surface, with a zonal transport associated to the NC of ≈ 1 Sv. Strong westerly wind events (longer than 2–3 days) induce an interplay between the direct wind induced ageostrophic response and the geostrophic component: upwelling is observed, with offshore surface transport, surface cooling, flattening of the isopycnals and reduced zonal geostrophic transport (0.5–0.7 Sv). The sea surface response to wind events, as observed by the HF radar, shows total currents rotated at ≈ −55° to −90° to the right of the wind. Performing a decomposition between geostrophic and geostrophic components of the surface currents, the wind driven ageostrophic component is found to rotate of ≈ −25° to −30° to the right of the wind. The ageostrophic component magnitude corresponds to ≈ 2 % of the wind speed.

Ocean Science ◽  
2018 ◽  
Vol 14 (4) ◽  
pp. 689-710 ◽  
Author(s):  
Maristella Berta ◽  
Lucio Bellomo ◽  
Annalisa Griffa ◽  
Marcello G. Magaldi ◽  
Anne Molcard ◽  
...  

Abstract. The variability and evolution of the Northern Current (NC) in the area off Toulon is studied for 2 weeks in December 2011 using data from a glider, a high-frequency (HF) radar network, vessel surveys, a weather station, and an atmospheric model. The NC variability is dominated by a synoptic response to wind events, even though the dataset also evidences early stages of transition from late summer to fall–winter conditions. With weak winds, the current is mostly zonal and in geostrophic balance even at the surface, with a zonal transport associated with the NC of ≈1 Sv. Strong westerly wind events (longer than 2–3 days) induce an interplay between the direct-wind-induced ageostrophic response and the geostrophic component: upwelling is observed, with offshore surface transport, surface cooling, flattening of the isopycnals, and reduced zonal geostrophic transport (0.5–0.7 Sv). The sea surface response to wind events, as observed by the HF radar, shows total currents rotated at ≈-55 to -90∘ to the right of the wind. Performing a decomposition between geostrophic and ageostrophic components of the surface currents, the wind-driven ageostrophic component is found to rotate by ≈-25 to -30∘ to the right of the wind. The ageostrophic component magnitude corresponds to ≈2 % of the wind speed.


2019 ◽  
Vol 7 (6) ◽  
pp. 182
Author(s):  
Francesco Ragone ◽  
Andrea Meli ◽  
Anna Napoli ◽  
Claudia Pasquero

The Western Mediterranean Sea is often subject to intense winds, especially during the winter season. Intense winds induce surface cooling associated with anomalous ocean heat loss, upwelling and diapycnal mixing. In this study we investigate the overall impact of extreme wind events on the upper ocean in the Western Mediterranean sea using sea surface temperature and sea surface height observational data products over the period 1993–2014. We show that the largest thermal anomaly is observed a couple of days after the intense wind event and that it is dependent on the wind intensity. During winter, when deep water formation occurs, it persists for over a month. During summer, when the thermocline is very shallow, the recovery time scale is typically less than 10 days. The sea surface height signal reaches a minimum in correspondence to the intense wind, and normal conditions recover in about six weeks. Unlike for intense winds in the tropics associated to the passage of tropical cyclones, no long term sea surface height anomaly is observed, indicating that the water column heat content is not significantly modified. The observed recovery times suggest instead the possibility of feedbacks on the dynamics of intense cyclones at sub-monthly time scales.


2018 ◽  
Author(s):  
Francesco Ragone ◽  
Andrea Meli ◽  
Anna Napoli ◽  
Claudia Pasquero

Abstract. The Western Mediterranean Sea is often subject to intense winds, especially during the winter season. The effects of the enhanced enthalpy and momentum fluxes on the upper ocean is investigated using sea surface temperature and sea surface height observational data products in the period 1993–2014. The maximum surface cooling associated with the anomalous ocean heat loss, with upwelling, and with diapycnal mixing is shown to occur a couple of days after the intense wind event, to be dependent on the wind intensity and to persist for over a month during winter, when deep water is formed, and for about 10 days during summer, when the thermocline is very shallow. The sea surface height signal reaches a minimum in correspondence of the intense wind, and normal conditions recover in about six weeks. Unlike for intense winds in the tropics, associated to tropical cyclones, no long term sea surface height anomaly is observed, indicating that the water column heat content is not significantly modified.


Sign in / Sign up

Export Citation Format

Share Document