scholarly journals Measuring rates of present-day relative sea-level rise in low-elevation coastal zones: A critical evaluation

Author(s):  
Molly E. Keogh ◽  
Torbjörn E. Törnqvist

Abstract. Although tide gauges are the primary source of data used to calculate multi-decadal to century-scale rates of relative sea-level change, we question the reliability of tide-gauge data in rapidly subsiding low-elevation coastal zones (LECZs). Tide gauges measure relative sea-level rise (RSLR) with respect to the base of associated benchmarks. Focusing on coastal Louisiana, the largest LECZ in the United States, we find that these benchmarks (n = 35) are anchored an average of 21.5 m below the land surface. Because at least 60 % of subsidence occurs in the top 5–10 m of the sediment column in this area, tide gauges in coastal Louisiana do not capture the primary contributor to RSLR. Similarly, GPS stations (n = 10) are anchored an average of > 14.3 m below the land surface and therefore also do not capture shallow subsidence. As a result, tide gauges and GPS stations in coastal Louisiana, and likely in LECZs worldwide, systematically underestimate rates of RSLR as experienced at the land surface. We present an alternative approach that explicitly measures RSLR in LECZs with respect to the land surface and eliminates the need for tide-gauge data. Shallow subsidence is measured by rod surface-elevation table‒marker horizons (RSET-MHs) and added to measurements of deep subsidence from GPS data, plus sea-level rise from satellite altimetry. We show that for a LECZ the size of coastal Louisiana (25,000–30,000 km2), about 40 RSET-MH instruments suffice to collect useful data. Rates of RSLR obtained from this approach are substantially higher than rates as inferred from tide-gauge data. We therefore conclude that LECZs may be at higher risk of flooding, and within a shorter time horizon, than previously assumed.

Ocean Science ◽  
2019 ◽  
Vol 15 (1) ◽  
pp. 61-73 ◽  
Author(s):  
Molly E. Keogh ◽  
Torbjörn E. Törnqvist

Abstract. Although tide gauges are the primary source of data used to calculate multi-decadal- to century-scale rates of relative sea-level change, we question the usefulness of tide-gauge data in rapidly subsiding low-elevation coastal zones (LECZs). Tide gauges measure relative sea-level rise (RSLR) with respect to the base of associated benchmarks. Focusing on coastal Louisiana, the largest LECZ in the United States, we find that these benchmarks (n=35) are anchored an average of 21.5 m below the land surface. Because at least 60 % of subsidence occurs in the top 5 m of the sediment column in this area, tide gauges in coastal Louisiana do not capture the primary contributor to RSLR. Similarly, global navigation satellite system (GNSS) stations (n=10) are anchored an average of > 14.3 m below the land surface and therefore also do not capture shallow subsidence. As a result, tide gauges and GNSS stations in coastal Louisiana, and likely in LECZs worldwide, systematically underestimate rates of RSLR as experienced at the land surface. We present an alternative approach that explicitly measures RSLR in LECZs with respect to the land surface and eliminates the need for tide-gauge data in this context. Shallow subsidence is measured by rod surface-elevation table–marker horizons (RSET-MHs) and added to measurements of deep subsidence from GNSS data, plus sea-level rise from satellite altimetry. We show that for an LECZ the size of coastal Louisiana (25 000–30 000 km2), about 40 RSET-MH instruments suffice to collect useful data. Rates of RSLR obtained from this approach are substantially higher than rates as inferred from tide-gauge data. We therefore conclude that LECZs may be at higher risk of flooding within a shorter time horizon than previously assumed.


2021 ◽  
Author(s):  
Timothy Shaw ◽  
Stephen Chua ◽  
Jedrzej Majewski ◽  
Li Tanghua ◽  
Dhrubajyoti Samanta ◽  
...  

<p>Singapore is a small (728 km<sup>2</sup>) island nation that is vulnerable to rising sea levels with 30% of its land surface area less than 5 m above present sea level. Rising relative sea level (RSL), however, is not uniform with regional RSL changes differing from the global mean due to processes associated with vertical land motion (e.g., glacial-isostatic adjustment) and atmospheric and ocean dynamics. Understanding magnitudes, rates, and driving processes on past and present-day sea level are therefore important to provide greater confidence in accurately quantifying future sea-level rise projections and their uncertainty. Here, we present a synopsis of Singapore’s past and present RSL history using newly developed proxy RSL reconstructions from mangrove peats, coral microatolls and tide gauge data and conclude with probabilistic projections of future RSL change.</p><p>Past RSL is characterized by rapid rise during the early Holocene driven primarily by deglaciation of northern hemisphere ice sheets. Sea-level index points (SLIPs) from mangrove peats show sea levels rose rapidly from -20.7 m at 9.5 ka BP to -0.6 m at 7 ka BP at rates of 6-12 mm/yr. This is substantially greater than predicted magnitudes of RSL change from the ICE-6G_C GIA model which shows RSL increasing from -6.4 m at 9.5 ka BP to a ~2.8 m highstand at ~7 ka BP. SLIPs show the mid-Holocene highstand of ~4 ± 3.6 m at 5.2 ka BP before falling towards present at rates up to -2 mm/yr driven by hydro-isostatic processes. The nature of RSL changes during the mid- to late-Holocene transition remains poorly resolved with evidence of sea levels falling below present level to -2.2 ± 2.0 m at 1.2 ka BP. Present RSL reconstructions from coral microatolls coupled with tide-gauge data extend the limited instrumental period in this region beyond ~50 years. They show RSL rose ~0.03 m from 1915 to 1990 at 0.7 ± 1.4 mm/yr before increasing to 1.5 ± 2.1 mm/yr after 1990 to 2019. Future RSL change from probabilistic projections to 2100 under low (RCP 2.6) and high (RCP 8.5) emission scenarios show sea levels rising 0.43 m (50<sup>th</sup> percentile) (0.06 – 0.96 m; 95% credible interval) and 0.74 m (0.28 – 1.4 m), respectively. However, projected magnitudes of sea-level rise driven by rapid ice sheet dynamics and the unknown contribution of atmospheric and ocean dynamics in Southeast Asia have the potential to exacerbate projection magnitudes.</p>


Author(s):  
Davide Zanchettin ◽  
Sara Bruni ◽  
Fabio Raicich ◽  
Piero Lionello ◽  
Fanny Adloff ◽  
...  

Abstract. The City of Venice and the surrounding lagoonal ecosystem are highly vulnerable to variations in relative sea level. In the past ~150 years, this was characterized by a secular linear trend of about 2.5 mm/year resulting from the combined contributions of vertical land movement and sea-level rise. This literature review reassesses and synthesizes the progress achieved in understanding, estimating and predicting the individual contributions to local relative sea level, with focus on the most recent publications. The current best estimate of historical sea-level rise in Venice, based on tide-gauge data after removal of subsidence effects, is 1.23 ± 0.13 mm/year (period from 1872 to 2019). Subsidence thus contributed to about half of the observed relative sea-level rise over the same period. A higher – yet more uncertain – rate of sea-level rise is observed during recent decades, estimated from tide-gauge data to be about 2.76 ± 1.75 mm/year in the period 1993–2019 for the climatic component alone. An unresolved issue is the contrast between the observational capacity of tide gauges and satellite altimetry, with the latter tool not covering the Venice Lagoon. Water mass exchanges through the Gibraltar Strait currently constitute a source of substantial uncertainty for estimating future deviations of the Mediterranean mean sea-level trend from the global-mean value. Subsidence and regional atmospheric and oceanic circulation mechanisms can deviate Venetian relative sea-level trends from the global mean values for several decades. Regional processes will likely continue to determine significant interannual and interdecadal variability of Venetian sea level with magnitude comparable to that observed in the past, as well as non-negligible differential trends. Our estimate of the likely range of mean sea-level rise in Venice by 2100 due to climate change is presently estimated between 11 and 110 centimetres. An improbable yet possible high-end scenario linked to strong ice-sheet melting yields about 170 centimetres of mean sea-level rise in Venice by 2100. Projections of natural and human induced vertical land motions are currently not available, but historical evidence demonstrates that they can produce a significant contribution to the relative sea-level rise in Venice, further increasing the hazard posed by climatically-induced sea-level changes.


2019 ◽  
Vol 11 (3) ◽  
pp. 277 ◽  
Author(s):  
Suresh Palanisamy Vadivel ◽  
Duk-jin Kim ◽  
Jungkyo Jung ◽  
Yang-Ki Cho ◽  
Ki-Jong Han ◽  
...  

Vertical land motion at tide gauges influences sea level rise acceleration; this must be addressed for interpreting reliable sea level projections. In recent years, tide gauge records for the Eastern coast of Korea have revealed rapid increases in sea level rise compared with the global mean. Pohang Tide Gauge Station has shown a +3.1 cm/year sea level rise since 2013. This study aims to estimate the vertical land motion that influences relative sea level rise observations at Pohang by applying a multi-track Persistent Scatter Interferometric Synthetic Aperture Radar (PS-InSAR) time-series analysis to Sentinel-1 SAR data acquired during 2015–2017. The results, which were obtained at a high spatial resolution (10 m), indicate vertical ground motion of −2.55 cm/year at the Pohang Tide Gauge Station; this was validated by data from a collocated global positioning system (GPS) station. The subtraction of InSAR-derived subsidence rates from sea level rise at the Pohang Tide Gauge Station is 6 mm/year; thus, vertical land motion significantly dominates the sea level acceleration. Natural hazards related to the sea level rise are primarily assessed by relative sea level changes obtained from tide gauges; therefore, tide gauge records should be reviewed for rapid vertical land motion along the vulnerable coastal areas.


2020 ◽  
Author(s):  
Peter Thejll

<p>Information on extremes of the sea-level is obtained from tide-gauge<br>records.  Such records may have gaps.</p><p>Estimates of potential changes in the size and/or frequency of sea-level<br>extremes are hampered by long gaps, or when just the high extremes are<br>missing due, e.g. to equipment failure.</p><p>Methods used for filling such gaps can be based on having multiple<br>records from gauges near each other; but what to do if there is<br>only one record? This problem can typically occur when old tide-gauge<br>records are used -- the use of multiple recorders at the same place is<br>more wide-spread today. However, especially older and therefore longer<br>records hold the key to obtaining long-baseline insights into the temporal<br>evolution of extreme tides and thus impacts of e.g. climate change.</p><p>In this work, we review and assess methods for gap filling. We asses using<br>the 'known truth' method, i.e. by applying realistic gaps to complete<br>gauge records and reconstructing and then comparing errors calculated as<br>the diffrence between modelled and actual values.  We compare a simple<br>harmonic model fit method to various spline methods as well as Neural<br>network and deep learning approches.  We also test a hybrid method<br>which uses not just tide-gauge data but also air pressure readings<br>from a meteorological station near the tide-gauge.</p><p>We then attempt to fill in the missing maxima of the Esbjerg, Denmark<br>hourly tide-gauge record since 1889. Particularly, before 1910 the maxima<br>above 300 cm are missing (Bijl, et al., 1999), and we try to fill these in.</p>


2021 ◽  
Vol 21 (8) ◽  
pp. 2643-2678 ◽  
Author(s):  
Davide Zanchettin ◽  
Sara Bruni ◽  
Fabio Raicich ◽  
Piero Lionello ◽  
Fanny Adloff ◽  
...  

Abstract. The city of Venice and the surrounding lagoonal ecosystem are highly vulnerable to variations in relative sea level. In the past ∼150 years, this was characterized by an average rate of relative sea-level rise of about 2.5 mm/year resulting from the combined contributions of vertical land movement and sea-level rise. This literature review reassesses and synthesizes the progress achieved in quantification, understanding and prediction of the individual contributions to local relative sea level, with a focus on the most recent studies. Subsidence contributed to about half of the historical relative sea-level rise in Venice. The current best estimate of the average rate of sea-level rise during the observational period from 1872 to 2019 based on tide-gauge data after removal of subsidence effects is 1.23 ± 0.13 mm/year. A higher – but more uncertain – rate of sea-level rise is observed for more recent years. Between 1993 and 2019, an average change of about +2.76 ± 1.75 mm/year is estimated from tide-gauge data after removal of subsidence. Unfortunately, satellite altimetry does not provide reliable sea-level data within the Venice Lagoon. Local sea-level changes in Venice closely depend on sea-level variations in the Adriatic Sea, which in turn are linked to sea-level variations in the Mediterranean Sea. Water mass exchange through the Strait of Gibraltar and its drivers currently constitute a source of substantial uncertainty for estimating future deviations of the Mediterranean mean sea-level trend from the global-mean value. Regional atmospheric and oceanic processes will likely contribute significant interannual and interdecadal future variability in Venetian sea level with a magnitude comparable to that observed in the past. On the basis of regional projections of sea-level rise and an understanding of the local and regional processes affecting relative sea-level trends in Venice, the likely range of atmospherically corrected relative sea-level rise in Venice by 2100 ranges between 32 and 62 cm for the RCP2.6 scenario and between 58 and 110 cm for the RCP8.5 scenario, respectively. A plausible but unlikely high-end scenario linked to strong ice-sheet melting yields about 180 cm of relative sea-level rise in Venice by 2100. Projections of human-induced vertical land motions are currently not available, but historical evidence demonstrates that they have the potential to produce a significant contribution to the relative sea-level rise in Venice, exacerbating the hazard posed by climatically induced sea-level changes.


2017 ◽  
Author(s):  
Se-Hyeon Cheon ◽  
Benjamin D. Hamlington ◽  
Kyung-Duck Suh

Abstract. Since the advent of the modern satellite altimeter era, the understanding of the sea level has increased dramatically. The satellite altimeter record, however, dates back only to the 1990s. The tide gauge record, on the other hand, extends through the 20th century, but with poor spatial coverage when compared to the satellites. Many studies have been conducted to extend the spatial resolution of the satellite data into the past by finding novel ways to combine the satellite data and tide gauge data in what are known as sea level reconstructions. However, most of the reconstructions of sea level were conducted on a global scale, leading to reduced accuracy on regional levels, particularly where there are relatively few tide gauges. The sea around the Korean Peninsula is one such area with few tide gauges prior to 1960. In this study, new methods are proposed to reconstruct the past sea level and project the future sea level around the Korean Peninsula. Using spatial patterns obtained from a cyclo-stationary empirical orthogonal function decomposition of satellite data, we reconstruct sea level over the time period from 1900 to 2014. Sea surface temperature data and altimeter data are used simultaneously in the reconstruction process, leading to an elimination of reliance on tide gauge data. Although the tide gauge data was not used in the reconstruction process, the reconstructed results showed better agreement with the tide gauge observations in the region than previous studies that incorporated the TG data. This study demonstrates a reconstruction technique that can be used on regional levels, with particular emphasis on areas with poor tide gauge coverage.


Sign in / Sign up

Export Citation Format

Share Document