scholarly journals Variability of Antarctic intermediate Water properties in the South Pacific Ocean

Ocean Science ◽  
2007 ◽  
Vol 3 (3) ◽  
pp. 363-377 ◽  
Author(s):  
M. Tomczak

Abstract. Argo float time series data are used to study the salinity field at the depth of the salinity minimum produced by Antarctic Intermediate Water (AAIW). It is found that far from showing the smooth erosion of the minimum that would result from diffusive flow, the salinity field is characterized by features of geostrophic turbulence such as fronts, eddies and intrusions. Comparison of the Argo float observations with the climatology of the World Ocean Atlas (WOA) reveals significant differences between the two data sets. Some of the differences may have their origin in problems with the WOA data density in remote regions of the South Pacific, but most are more likely produced by interannual variations of the AAIW salinity field.

2006 ◽  
Vol 3 (6) ◽  
pp. 2021-2058 ◽  
Author(s):  
M. Tomczak

Abstract. Argo float time series data are used to study the salinity field at the depth of the salinity minimum produced by Antarctic Intermediate Water (AAIW). It is found that far from showing the smooth erosion of the minimum that would result from diffusive flow, the salinity field is characterized by features of geostrophic turbulence such as fronts, eddies and intrusions. Comparison of the Argo float observations with the climatology of the World Ocean Atlas (WOA) reveals significant differences between the two data sets. Some of the differences may have their origin in problems with the WOA data density in remote regions of the South Pacific, but most are more likely produced by interannual variations of the AAIW salinity field.


2007 ◽  
Vol 37 (1) ◽  
pp. 31-49 ◽  
Author(s):  
Daniele Iudicone ◽  
Keith B. Rodgers ◽  
Richard Schopp ◽  
Gurvan Madec

Abstract Antarctic Intermediate Water (AAIW) occupies the intermediate horizon of most of the world oceans. Formed in the Southern Ocean, it is characterized by a relative salinity minimum. With a new, denser in situ National Oceanographic Data Center dataset, the authors have reanalyzed the export characteristics of AAIW from the Southern Ocean into the South Pacific Ocean. These new data show that part of the AAIW is exported from the subpolar frontal region by the large-scale circulation through an exchange window of 10° width situated east of 90°W in the southeast corner of the Pacific basin. This suggests the origin of this water to be in the Antarctic Circumpolar Current. A set of numerical modeling experiments has been used to reproduce these observed features and to demonstrate that the dynamics of the exchange window is controlled by the basin-scale meridional pressure gradient. The exchange of AAIW between the Southern and Pacific Oceans must therefore be understood in the context of the large basin-scale dynamical balance rather than simply local effects.


2016 ◽  
Author(s):  
Wenjun Yao ◽  
Jiuxin Shi

Abstract. Basin-scaled freshening of Antarctic Intermediate Water (AAIW) is reported to have dominated South Atlantic Ocean during period from 2005 to 2014, as shown by the gridded monthly means Argo (Array for Real-time Geostrophic Oceanography) data. The relevant investigation was also revealed by two transatlantic occupations of repeated section along 30° S, from World Ocean Circulation Experiment Hydrographic Program. Freshening of the AAIW was compensated by the opposing salinity increase of thermocline water, indicating the contemporaneous hydrological cycle intensification. This was illustrated by the precipitation less evaporation change in the Southern Hemisphere from 2000 to 2014, with freshwater input from atmosphere to ocean surface increasing in the subpolar high-precipitation region and vice versa in the subtropical high-evaporation region. Against the background of hydrological cycle augment, the decreased transport of Agulhas Leakage (AL) was proposed to be one of the contributors for the associated freshening of AAIW. This indirectly estimated variability of AL, reflected by the weakening of wind stress over the South Indian Ocean since the beginning of 2000s, facilitates the freshwater input from source region and partly contributes to the observed freshened AAIW. Both of our mechanical analysis is qualitative, but this work would be helpful to validate and test predictably coupled sea-air model simulations.


Radiocarbon ◽  
2019 ◽  
Vol 61 (6) ◽  
pp. 1685-1696 ◽  
Author(s):  
Aymeric PM Servettaz ◽  
Yusuke Yokoyama ◽  
Shoko Hirabayashi ◽  
Markus Kienast ◽  
Yosuke Miyairi ◽  
...  

ABSTRACTThe South Pacific Ocean contributes to the global carbon cycle by exchanging CO2 between the atmosphere and intermediate to deep water masses. The path of the Antarctic Intermediate Water (AAIW) in the South Pacific gyre has been inferred from salinity, oxygen, and nutrient measurements, but radiocarbon (14C) measurements—a direct tracer of the carbon cycle—remain sparse. Here, we present the first radiocarbon profiles in the western Coral Sea and compare our measurements with South Pacific stations from GLODAPv2, a database of ocean hydrochemistry. Surface and subsurface waters in the Coral Sea cannot be attributed to a single source based on their Δ14C signatures, and we observe a penetration of bomb-produced 14C. AAIW in the western Coral Sea shows Δ14C values comparable to those in the South Pacific gyre, consistent with circulation of AAIW in the lower part of the southern equatorial current. The deep waters of the western Coral Sea have significantly higher 14C than the South Pacific at the same isopycnal, consistent with a northward intrusion of Circumpolar Deep Water from the Tasman Sea, along with a westward influx of deep waters from the Central Pacific. In accordance with silicate concentrations published previously, this shows the dual origin of deep waters in the Coral Sea.


Ocean Science ◽  
2017 ◽  
Vol 13 (4) ◽  
pp. 521-530 ◽  
Author(s):  
Wenjun Yao ◽  
Jiuxin Shi ◽  
Xiaolong Zhao

Abstract. Basin-scale freshening of Antarctic Intermediate Water (AAIW) is reported to have occurred in the South Atlantic Ocean during the period from 2005 to 2014, as shown by the gridded monthly means of the Array for Real-time Geostrophic Oceanography (Argo) data. This phenomenon was also revealed by two repeated transects along a section at 30° S, performed during the World Ocean Circulation Experiment Hydrographic Program. Freshening of the AAIW was compensated for by a salinity increase of thermocline water, indicating a hydrological cycle intensification. This was supported by the precipitation-minus-evaporation change in the Southern Hemisphere from 2000 to 2014. Freshwater input from atmosphere to ocean surface increased in the subpolar high-precipitation region and vice versa in the subtropical high-evaporation region. Against the background of hydrological cycle changes, a decrease in the transport of Agulhas Leakage (AL), which was revealed by the simulated velocity field, was proposed to be a contributor to the associated freshening of AAIW. Further calculation showed that such a decrease could account for approximately 53 % of the observed freshening (mean salinity reduction of about 0.012 over the AAIW layer). The estimated variability of AL was inferred from a weakening of wind stress over the South Indian Ocean since the beginning of the 2000s, which would facilitate freshwater input from the source region. The mechanical analysis of wind data here was qualitative, but it is contended that this study would be helpful to validate and test predictably coupled sea–air model simulations.


2007 ◽  
Vol 73 (13) ◽  
pp. 4198-4205 ◽  
Author(s):  
Raphaël Lami ◽  
Matthew T. Cottrell ◽  
Joséphine Ras ◽  
Osvaldo Ulloa ◽  
Ingrid Obernosterer ◽  
...  

ABSTRACT Little is known about the abundance, distribution, and ecology of aerobic anoxygenic phototrophic (AAP) bacteria, particularly in oligotrophic environments, which represent 60% of the ocean. We investigated the abundance of AAP bacteria across the South Pacific Ocean, including the center of the gyre, the most oligotrophic water body of the world ocean. AAP bacteria, Prochlorococcus, and total prokaryotic abundances, as well as bacteriochlorophyll a (BChl a) and divinyl-chlorophyll a concentrations, were measured at several depths in the photic zone along a gradient of oligotrophic conditions. The abundances of AAP bacteria and Prochlorococcus were high, together accounting for up to 58% of the total prokaryotic community. The abundance of AAP bacteria alone was up to 1.94 × 105 cells ml−1 and as high as 24% of the overall community. These measurements were consistent with the high BChl a concentrations (up to 3.32 × 10−3 μg liter−1) found at all stations. However, the BChl a content per AAP bacterial cell was low, suggesting that AAP bacteria are mostly heterotrophic organisms. Interestingly, the biovolume and therefore biomass of AAP bacteria was on average twofold higher than that of other prokaryotic cells. This study demonstrates that AAP bacteria can be abundant in various oligotrophic conditions, including the most oligotrophic regime of the world ocean, and can account for a large part of the bacterioplanktonic carbon stock.


2011 ◽  
Vol 58 (5) ◽  
pp. 524-534 ◽  
Author(s):  
Corinne A. Hartin ◽  
Rana A. Fine ◽  
Bernadette M. Sloyan ◽  
Lynne D. Talley ◽  
Teresa K. Chereskin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document