scholarly journals On the time to tracer equilibrium in the global ocean

2008 ◽  
Vol 5 (3) ◽  
pp. 471-506
Author(s):  
F. Primeau ◽  
E. Deleersnijder

Abstract. An important issue for the interpretation of data from deep-sea cores is the time for tracers to be transported from the sea surface to the deep ocean. Global ocean circulation models can help shed light on the timescales over which a tracer comes to equilibrium in different regions of the ocean. In this note, we discuss how the most slowly decaying eigenmode of a model can be used to obtain a relevant timescale for a tracer that enters through the sea surface to become well mixed in the ocean interior. We show how this timescale depends critically on the choice between a Neumann surface boundary condition in which the flux of tracer is prescribed or a Dirichlet surface boundary condition in which the concentration is prescribed. Explicit calculations with a 3-box model and a three-dimensional ocean circulation model show that the Dirichlet boundary condition when applied to only part of the surface ocean greatly overestimate the time needed to reach equilibrium. As a result regional-"injection" calculations which prescribe the surface concentration instead of the surface flux are not relevant for interpreting the regional disequilibrium between the Atlantic and Pacific found in paleo-tracer records from deep-sea cores. For tracers such as δ18O that enter the ocean from melt water, a Neumann boundary condition is more relevant. For tracers that enter the ocean through air-sea gas exchange such as 14C, a prescribed concentration boundary condition can be used to infer relevant timescales, but the Dirichlet Boundary condition must be applied over the entire ocean surface and not only to a patch of limited area. Our three-dimensional model results based on a steady-state modern circulation suggest that the relative disequilibrium between the deep Atlantic and Pacific is on the order of "only" 1200 years or less and does not depend on the size and location of the patch where the tracer is injected.

Ocean Science ◽  
2009 ◽  
Vol 5 (1) ◽  
pp. 13-28 ◽  
Author(s):  
F. Primeau ◽  
E. Deleersnijder

Abstract. An important issue for the interpretation of data from deep-sea cores is the time for tracers to be transported from the sea surface to the deep ocean. Global ocean circulation models can help shed light on the timescales over which a tracer comes to equilibrium in different regions of the ocean. In this note, we discuss how the most slowly decaying eigenmode of a model can be used to obtain a relevant timescale for a tracer that enters through the sea surface to become well mixed in the ocean interior. We show how this timescale depends critically on the choice between a Neumann surface boundary condition in which the flux of tracer is prescribed, a Robin surface boundary condition in which a combination of the flux and tracer concentration is prescribed or a Dirichlet surface boundary condition in which the concentration is prescribed. Explicit calculations with a 3-box model and a three-dimensional ocean circulation model show that the Dirichlet boundary condition when applied to only part of the surface ocean greatly overestimate the time needed to reach equilibrium. As a result regional-"injection" calculations which prescribe the surface concentration instead of the surface flux are not relevant for interpreting the regional disequilibrium between the Atlantic and Pacific found in paleo-tracer records from deep-sea cores. For tracers that enter the ocean through air-sea gas exchange a prescribed concentration boundary condition can be used to infer relevant timescales if the air-sea gas exchange rate is sufficiently fast, but the boundary condition must be applied over the entire ocean surface and not only to a patch of limited area. For tracers with a slow air-sea exchange rate such as 14C a Robin-type boundary condition is more relevant and for tracers such as δ18O that enter the ocean from melt water, a Neumann boundary condition is presumably more relevant. Our three-dimensional model results based on a steady-state modern circulation suggest that the relative disequilibrium between the deep Atlantic and Pacific is on the order of "only" 1200 years or less for a Neumann boundary condition and does not depend on the size and location of the patch where the tracer is injected.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Xiaoqing Wen ◽  
Yue Chen ◽  
Hongwei Yin

We study a three-dimensional system of a diffusive predator-prey model including disease spread for prey and with Dirichlet boundary condition and Michaelis-Menten functional response. By semigroup method, we are able to achieve existence of a global solution of this system. Extinction of this system is established by spectral method. By using bifurcation theory and fixed point index theory, we obtain existence and nonexistence of inhomogeneous positive solutions of this system in steady state.


1980 ◽  
Vol 31 (4) ◽  
pp. 252-284
Author(s):  
E.H. Dowell

SummarySignificant new results are presented to show to what extent a simplified theory for transonic flow may be used. Solutions are obtained by classical techniques and compared with experiment. Results are given for two-dimensional and three-dimensional, steady and unsteady flow. The effects of flow separation and improvements in Bernoulli’s equation and the surface boundary condition are also briefly discussed.


2020 ◽  
Vol 10 (1) ◽  
pp. 522-533
Author(s):  
Amanda S. S. Correa Leão ◽  
Joelma Morbach ◽  
Andrelino V. Santos ◽  
João R. Santos Júnior

Abstract Some classes of generalized Schrödinger stationary problems are studied. Under appropriated conditions is proved the existence of at least 1 + $\begin{array}{} \sum_{i=2}^{m} \end{array}$ dim Vλi pairs of nontrivial solutions if a parameter involved in the equation is large enough, where Vλi denotes the eigenspace associated to the i-th eigenvalue λi of laplacian operator with homogeneous Dirichlet boundary condition.


Sign in / Sign up

Export Citation Format

Share Document