scholarly journals A 2600-year-long paleoseismic record for the Himalayan Main Frontal Thrust (western Bhutan)

Solid Earth ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 2359-2375
Author(s):  
Romain Le Roux-Mallouf ◽  
Matthieu Ferry ◽  
Rodolphe Cattin ◽  
Jean-François Ritz ◽  
Dowchu Drukpa ◽  
...  

Abstract. In spite of an increasing number of paleoseismic studies carried out over the last decade along the Himalayan Arc, the chronology of historical and prehistorical earthquakes is still poorly constrained. In this paper, we present geomorphologic and paleoseismic studies conducted over a large river-cut exposure along the Main Fontal Thrust in southwestern Bhutan. The Piping site reveals a 30 m high fault-propagation fold deforming late Holocene alluvial deposits. There, we carried out detailed paleoseismic investigations and built a chronological framework on the basis of 22 detrital charcoal samples submitted to radiocarbon dating. Our analysis reveals the occurrence of at least five large and great earthquakes between 485±125 BCE and 1714 CE with an average recurrence interval of 550±211 years. Coseismic slip values for most events reach at least 12 m and suggest associated magnitudes are in the range of Mw 8.5–9. The cumulative deformation yields an average slip rate of 24.9±10.4 mm yr−1 along the Main Frontal Thrust over the last 2600 years, in agreement with geodetic and geomorphological results obtained nearby.

2020 ◽  
Author(s):  
Romain Le Roux-Mallouf ◽  
Matthieu Ferry ◽  
Rodolphe Cattin ◽  
Jean-François Ritz ◽  
Dowchu Drukpa ◽  
...  

Abstract. In spite of an increasing number of paleoseismic studies carried out over the last decade along the Himalayan arc, the chronology of historical and pre-historical earthquakes is still poorly constrained. In this paper, we present geomorphologic and paleoseismic studies conducted over a large river-cut exposure along the Main Fontal Thrust in southwestern Bhutan. The Piping site reveals a 30-m-high fault-propagation fold deforming late Holocene alluvial deposits. There, we carried out detailed paleoseismic investigations and built a chronological framework on the basis of 22 detrital charcoal samples submitted to radiocarbon dating. Our analysis reveals the occurrence of at least five large and great earthquakes between 485 ± 125 BC and AD 1714 with an average recurrence interval of 550 ± 211 yr. Co-seismic slip values for most events reach at least 13 m and suggest associated magnitudes are in the range of Mw 8.5–9. The cumulative deformation yields an average slip rate of 25.3 ± 4 mm/yr along the Main Frontal Thrust, over the last 2600 yr in agreement with geodetic and geomorphological results obtained nearby.


Antiquity ◽  
1993 ◽  
Vol 67 (255) ◽  
pp. 355-358 ◽  
Author(s):  
Alan Watchman ◽  
Noelene Cole

During the late Holocene, Aboriginal rock painters in north Queensland selected and combined various natural inorganic and organic materials in paint recipes – possibly to increase the longevity of their paintings. The organic materials make direct radiocarbon dating possible.


Author(s):  
Rumeng Guo ◽  
Hongfeng Yang ◽  
Yu Li ◽  
Yong Zheng ◽  
Lupeng Zhang

Abstract The 21 May 2021 Maduo earthquake occurred on the Kunlun Mountain Pass–Jiangcuo fault (KMPJF), a seismogenic fault with no documented large earthquakes. To probe its kinematics, we first estimate the slip rates of the KMPJF and Tuosuo Lake segment (TLS, ∼75 km north of the KMPJF) of the East Kunlun fault (EKLF) based on the secular Global Positioning System (GPS) data using the Markov chain Monte Carlo method. Our model reveals that the slip rates of the KMPJF and TLS are 1.7 ± 0.8 and 7.1 ± 0.3 mm/yr, respectively. Then, we invert high-resolution GPS and Interferometric Synthetic Aperture Radar observations to decipher the fault geometry and detailed coseismic slip distribution associated with the Maduo earthquake. The geometry of the KMPFJ significantly varies along strike, composed of five fault subsegments. The most slip is accommodated by two steeply dipping fault segments, with the patch of large sinistral slip concentrated in the shallow depth on a simple straight structure. The released seismic moment is ∼1.5×1020  N·m, equivalent to an Mw 7.39 event, with a peak slip of ∼9.3 m. Combining the average coseismic slip and slip rate of the main fault, an earthquake recurrence period of ∼1250−400+1120  yr is estimated. The Maduo earthquake reminds us to reevaluate the potential of seismic gaps where slip rates are low. Based on our calculated Coulomb failure stress, the Maduo earthquake imposes positive stress on the Maqin–Maqu segment of the EKLF, a long-recognized seismic gap, implying that it may accelerate the occurrence of the next major event in this region.


2021 ◽  
Author(s):  
Remi Matrau ◽  
Yann Klinger ◽  
Jonathan Harrington ◽  
Ulas Avsar ◽  
Esther R. Gudmundsdottir ◽  
...  

<p>Paleoseismology is key to study earthquake recurrence and fault slip rates during the Late Pleistocene-Holocene. The Húsavík-Flatey Fault (HFF) in northern Iceland is a 100 km-long right-lateral transform fault connecting the onshore Northern Volcanic Zone to the offshore Kolbeinsey Ridge and accommodating, together with the Grímsey Oblique Rift (GOR), ~18 mm/yr of relative motion between the Eurasian and North American plates. Significant earthquakes occurred on the HFF in 1755, 1838 and 1872 with estimated magnitudes of 6.5-7. However, historical information on past earthquakes prior to 1755 is very limited in both timing and size.</p><p>We excavated five trenches in a small basin (Vestari Krubbsskál) located 5.5 km southeast of the town of Húsavík and at 300 m.a.s.l. and one trench in an alluvial fan (Traðargerði) located 0.5 km north of Húsavík and at 50 m.a.s.l. In a cold and wet environment, such as in coastal parts of Iceland, one has to take into account periglacial processes affecting the topsoil to discriminate tectonic from non-tectonic deformation. We used tephra layers in the Vestari Krubbsskál and Traðargerði trenches as well as birch wood samples in Traðargerði to constrain the timing of past earthquakes. Tephra layers Hekla-3 (2971 BP) and Hekla-4 (4331±20 BP) are visible in the top half of all the trenches. In addition, a few younger tephra layers are visible in the top part of the trenches. In Traðargerði several dark layers rich in organic matter are found, including birch wood-rich layers from the Earlier Birch Period (9000-7000 BP) and the Later Birch Period (5000-2500 BP). In Vestari Krubbsskál the lower halves of the trenches display mostly lacustrine deposits whereas in Traðargerði the lower half of the trench shows alluvial deposits overlaying coarser deposits (gravels/pebbles) most likely of late-glacial or early post-glacial origins. In addition, early Holocene tephra layers are observed in some of the trenches at both sites and may correspond to Askja-S (10800 BP), Saksunarvatn (10300 BP) and Vedde (12100 BP). These observations provide good age constraints and suggest that both the Vestari Krubbsskál and Traðargerði trenches cover the entire Holocene.</p><p>Trenches at both sites show significant normal deformation in addition to strike-slip, well correlated with their larger scale topographies (pull-apart basin in Vestari Krubbsskál and 45 m-high fault scarp in Traðargerði). We mapped layers, cracks and faults on all trench walls to build a catalogue of Holocene earthquakes. We identified events based on the upward terminations of the cracks and retrodeformation. Our results yield fewer major earthquakes than expected, suggesting that large earthquakes (around magnitude 7) are probably rare and the more typical HFF earthquakes of magnitude 6-6.5 likely produce limited topsoil deformation.[yk1]  Our interpretation also suggests that the Holocene slip rate [yk2] for the fault section we are studying may be slower than the estimated geodetic slip rate (6 to 9 mm/yr)[yk3]  for the entire onshore HFF, although secondary onshore sub-parallel fault strands could accommodate part of the deformation.</p>


Geology ◽  
2011 ◽  
Vol 39 (3) ◽  
pp. 243-246 ◽  
Author(s):  
Nathan A. Toké ◽  
J Ramón Arrowsmith ◽  
Michael J. Rymer ◽  
Angela Landgraf ◽  
David E. Haddad ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document