scholarly journals Birth and closure of the Kallipetra Basin: Late Cretaceous reworking of the Jurassic Pelagonian–Axios/Vardar contact (northern Greece)

Solid Earth ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 2463-2485
Author(s):  
Lydia R. Bailey ◽  
Filippo L. Schenker ◽  
Maria Giuditta Fellin ◽  
Miriam Cobianchi ◽  
Thierry Adatte ◽  
...  

Abstract. Some 20 Myr after the Late Jurassic to Early Cretaceous obduction and collision at the eastern margin of Adria, the eroded Pelagonia (Adria)–Axios/Vardar (oceanic complex) contact collapsed, forming the Kallipetra Basin, described around the Aliakmon River near Veroia (northern Greece). Clastic and carbonate marine sediments deposited from the early Cenomanian to the end of the Turonian, with abundant olistoliths and slope failures at the base due to active normal faults. The middle part of the series is characterized by red and green pelagic limestones, with a minimal contribution of terrigenous debris. Rudist mounds in the upper part of the basin started forming on the southwestern slope, and their growth competed with a flux of ophiolitic debris, documenting the new fault scarps affecting the Vardar oceanic complex (VOC). Eventually, the basin was closed by overthrusting of the VOC towards the northeast and was buried and heated up to ∼ 180 ∘C. A strong reverse geothermal gradient with temperatures increasing up-section to near 300 ∘C is recorded beneath the VOC by illite crystallinity and by the crystallization of chlorite during deformation. This syntectonic heat partially reset the zircon fission track ages bracketing the timing of closure just after the deposition of the ophiolitic debris in the Turonian. This study documents the reworking of the Pelagonian–Axios/Vardar contact, with Cenomanian extension and basin widening followed by Turonian compression and basin inversion. Thrusting occurred earlier than previously reported in the literature for the eastern Adria and shows a vergence toward the northeast, at odds with the regional southwest vergence of the whole margin but in accordance to some reports about 50 km north.

2020 ◽  
Author(s):  
Lydia R. Bailey ◽  
Vincenzo Picotti ◽  
Maria Giuditta Fellin ◽  
Filippo L. Schenker ◽  
Miriam Cobianchi ◽  
...  

Abstract. Some 20 Ma after the Late Jurassic to Early Cretaceous obduction at the eastern margin of Adria, the eroded Pelagonia (Adria) – Axios-Vardar (Oceanic Complex) contact collapsed, forming the Kallipetra Basin, described around the Aliakmon river near Veroia (Northern Greece). Clastic and carbonate marine sediments deposited from early Cenomanian to end Turonian, with abundant olistoliths and slope failures at the base due to active normal faults. The middle part of the series is characterized by red and green pelagic limestones, with minimal contribution of terrigenous debris. Rudist mounds in the upper part of the basin started forming on the southwestern slope, and their growth was competing with a flux of ophiolitic debris, documenting the new fault scarps affecting the Vardar Oceanic Complex (VOC). Eventually, the basin was closed by overthrusting of the VOC towards the northeast and was buried and heated up to ~ 180 °C. A strong reverse geothermal gradient is recorded by illite crystallinity and zircon fission tracks, with temperatures increasing up-section to near 300 °C at the tectonic contact with the VOC. We interpret this anomaly as due to fluid migration from deeper sources and/or shearing affecting the porous and permeable deposits during early burial diagenesis. This study documents the reworking of the Pelagonian – Axios-Vardar contact, with Cenomanian extension and basin widening followed by Turonian compression and basin inversion. Thrusting occurred earlier than previously reported in the literature for the eastern Adria, and shows a vergence toward the northeast, at odds with the regional southwest vergence of the whole margin.


Solid Earth ◽  
2015 ◽  
Vol 6 (1) ◽  
pp. 285-302 ◽  
Author(s):  
F. L. Schenker ◽  
M. G. Fellin ◽  
J.-P. Burg

Abstract. The Pelagonian zone, situated between the External Hellenides/Cyclades to the west and the Axios/Vardar/Almopias zone (AVAZ) and the Rhodope to the east, was involved in late Early Cretaceous and in Late Cretaceous–Eocene orogenic events whose duration and extent are still controversial. This paper constrains their late thermal imprints. New and previously published zircon (ZFT) and apatite (AFT) fission-track ages show cooling below 240 °C of the metamorphic western AVAZ imbricates between 102 and 93–90 Ma, of northern Pelagonia between 86 and 68 Ma, of the eastern AVAZ at 80 Ma and of the western Rhodope at 72 Ma. At the regional scale, this heterogeneous cooling is coeval with subsidence of Late Cretaceous marine basin(s) that unconformably covered the Early Cretaceous (130–110 Ma) thrust system from 100 Ma. Thrusting resumed at 70 Ma in the AVAZ and migrated across Pelagonia to reach the External Hellenides at 40–38 Ma. Renewed thrusting in Pelagonia is attested at 68 Ma by abrupt and rapid cooling below 240 °C and erosion of the gneissic rocks. ZFT and AFT in western and eastern Pelagonia, respectively, testify at ~40 Ma to the latest thermal imprint related to thrusting. Central-eastern Pelagonia cooled rapidly and uniformly from 240 to 80 °C between 24 and 16 Ma in the footwall of a major extensional fault. Extension started even earlier, at ~33 Ma in the western AVAZ. Post-7 Ma rapid cooling is inferred from inverse modeling of AFT lengths. It occurred while E–W normal faults were cutting Pliocene-to-recent sediment.


2014 ◽  
Vol 6 (2) ◽  
pp. 3075-3109 ◽  
Author(s):  
F. L. Schenker ◽  
M. G. Fellin ◽  
J.-P. Burg

Abstract. The Pelagonian zone, between the External Hellenides/Cyclades to the west and the Axios/Vardar/Almopia zone (AVAZ) and Rhodope to the east, was involved in late Early Cretaceous and in Late Cretaceous-Eocene orogenic events whose duration are still controversial. This work constrains their late thermal imprints. New and previously published zircon (ZFT) and apatite (AFT) fission-track ages show cooling below 240°C of the metamorphic western AVAZ imbricates between 102 and 93–90 Ma, of northern Pelagonia between 86 and 68 Ma, of the eastern AVAZ at 80 Ma and of western Rhodope at 72 Ma. At the regional scale, this heterogeneous cooling is coeval with subsidence of Late Cretaceous marine basin(s) that unconformably covered since 100 Ma the Early Cretaceous (130–110 Ma) thrust system. Thrusting restarted at 70 Ma in the AVAZ and migrated across Pelagonia to reach the External Hellenides at 40–38 Ma. Renewed thrusting in Pelagonia is attested at 68 Ma by abrupt and rapid cooling below 240°C and erosion of the basement rocks. ZFT and AFT in western and eastern Pelagonia, respectively, set at 40 Ma the latest thermal imprint related to thrusting. Central-eastern Pelagonia cooled rapidly and uniformly from 240 to 80°C between 24 and 16 Ma in the footwall of a major extensional fault. Extension started even earlier, at 33 Ma in the western AVAZ. Post-7 Ma rapid cooling is inferred from inverse modeling of AFT lengths. It occurred while E–W normal faults were cutting Pliocene-to-recent sediment.


2004 ◽  
Vol 74 (1) ◽  
pp. 82-94 ◽  
Author(s):  
M. Bernet ◽  
M. T. Brandon ◽  
J. I. Garver ◽  
B. Molitor

1990 ◽  
Vol 33 (1) ◽  
pp. 86-93 ◽  
Author(s):  
Masao Kasuya

AbstractFission-track ages of zircon crystals from four tuff layers in the late Cenozoic sediment sequence of the Boso Peninsula,.Japan, are 1.6 ± 0.2 myr (the Kurotaki Formation), 5.5 ± 0.6 and 5.2 ± 0.5 myr (the uppermost part of the Amatsu Formation), and 11.5 ± 0.8 myr (the middle part of the Amatsu Formation). These ages provide numerical age constraints on magneto-biostratigraphy. The normal polarity interval in the lower part of the Kiwada Formation corresponds to the Olduvai polarity subzone. The boundary between the Pliocene and Pleistocene lies slightly above the Olduvai polarity subzone.


1993 ◽  
Vol 30 (4) ◽  
pp. 764-768 ◽  
Author(s):  
John M. Murphy ◽  
Arne Bakke

Eight apatite and two zircon fission-track ages provide evidence of complex Tertiary thermal overprinting by hydrothermal fluids in the Gilmore Dome area. Five ages on apatite from the Fort Knox gold deposit average 41 Ma, one from the Stepovich prospect is 80 Ma, and two from Pedro Dome average 67 Ma. Elevations of these samples overlap but their ages do not, indicating that each area experienced a different thermal history.Ages of apatite from the Fort Knox gold deposit decrease with elevation from 42 to 36 Ma but have data trends indicative of complex cooling. Two ~51 Ma ages on zircon indicate that maximum temperatures approached or exceeded ~180 °C. An alteration assemblage of chalcedony + zeolite + calcite + clay in the deposit resulted from deposition by a paleo-hydrothermal system. The data suggest that the system followed a complex cooling path from > 180 to < 110 °C between 51 and 36 Ma, and that final cooling to below 60 °C occurred after ~25 Ma.The 80 Ma age from Stepovich prospect either resulted from cooling after intrusion of the underlying pluton (~90 Ma) or records postintrusion thermal overprinting sometime after ~50 Ma. The 67 Ma samples from Pedro Dome may also have experienced partial age reduction during later heating. The differences in the data from the different areas and the presence of a late alteration assemblage at Fort Knox suggest that the fluids responsible for heating were largely confined to the highly fractured and porous Fort Knox pluton.


2014 ◽  
Vol 152 (5) ◽  
pp. 767-787 ◽  
Author(s):  
ARNE P. WILLNER ◽  
SANDRA M. BARR ◽  
JOHANNES GLODNY ◽  
HANS-JOACHIM MASSONNE ◽  
MASAFUMI SUDO ◽  
...  

Abstract40Ar/39Ar in situ UV laser ablation of white mica, Rb–Sr mineral isochrons and zircon fission track dating were applied to determine ages of very low- to low-grade metamorphic processes at 3.5±0.4 kbar, 280±30°C in the Avalonian Mira terrane of SE Cape Breton Island (Nova Scotia). The Mira terrane comprises Neoproterozoic volcanic-arc rocks overlain by Cambrian sedimentary rocks. Crystallization of metamorphic white mica was dated in six metavolcanic samples by 40Ar/39Ar spot age peaks between 396±3 and 363±14 Ma. Rb–Sr systematics of minerals and mineral aggregates yielded two isochrons at 389±7 Ma and 365±8 Ma, corroborating equilibrium conditions during very low- to low-grade metamorphism. The dated white mica is oriented parallel to foliations produced by sinistral strike-slip faulting and/or folding related to the Middle–Late Devonian transpressive assembly of Avalonian terranes during convergence and emplacement of the neighbouring Meguma terrane. Exhumation occurred earlier in the NW Mira terrane than in the SE. Transpression was related to the closure of the Rheic Ocean between Gondwana and Laurussia by NW-directed convergence. The 40Ar/39Ar spot age spectra also display relict age peaks at 477–465 Ma, 439 Ma and 420–428 Ma attributed to deformation and fluid access, possibly related to the collision of Avalonia with composite Laurentia or to earlier Ordovician–Silurian rifting. Fission track ages of zircon from Mira terrane samples range between 242±18 and 225±21 Ma and reflect late Palaeozoic reburial and reheating close to previous peak metamorphic temperatures under fluid-absent conditions during rifting prior to opening of the Central Atlantic Ocean.


Sign in / Sign up

Export Citation Format

Share Document