scholarly journals Structural geology and geophysics as a key to build a hydrogeologic model of granite rock to support a mine

Author(s):  
L. Martinez Landa ◽  
J. Carrera ◽  
A. Perez-Estaún ◽  
P. Gomez ◽  
C. Bajos

Abstract. A methodology developed for low permeability fractured media has been applied to understand the hydrogeology of a mine excavated in a granitic pluton. This methodology consists of (1) identifying the main ground water conducting features of the medium, such as the mine, dykes and large fractures, (2) implementing them as discrete elements into a three-dimensional numerical model, and (3) calibrating them against hydraulic data (Martínez-Landa and Carrera, 2005b). The key question is how to identify preferential flow paths in the first step. Here, we propose a combination of several techniques. Structural geology, together with borehole samples, geophysics, hydrogeochemistry and local hydraulic tests aided in locating all structures. Integrating these data yields a conceptual model of the site. A preliminary calibration of the model was performed against short-term (less than a day) pumping tests, which helped in the characterization of some fractures. Their hydraulic properties were then used for other fractures that, according to geophysics and structural geology, belonged to the same families. Model validity was tested by blind prediction of a long-term (4 months) large-scale (1 km) pumping test from the mine, which yielded an excellent agreement with observations. Model results confirm the sparsely fractured nature of the pluton, which has not been subjected to glacial loading-unloading cycles and whose waters are of Na-HCO3 type.

Solid Earth ◽  
2016 ◽  
Vol 7 (3) ◽  
pp. 881-895 ◽  
Author(s):  
Lurdes Martinez-Landa ◽  
Jesús Carrera ◽  
Andrés Pérez-Estaún ◽  
Paloma Gómez ◽  
Carmen Bajos

Abstract. A method developed for low-permeability fractured media was applied to understand the hydrogeology of a mine excavated in a granitic pluton. This method includes (1) identifying the main groundwater-conducting features of the medium, such as the mine, dykes, and large fractures, (2) implementing this factors as discrete elements into a three-dimensional numerical model, and (3) calibrating these factors against hydraulic data . A key question is how to identify preferential flow paths in the first step. Here, we propose a combination of several techniques. Structural geology, together with borehole sampling, geophysics, hydrogeochemistry, and local hydraulic tests aided in locating all structures. Integration of these data yielded a conceptual model of the site. A preliminary calibration of the model was performed against short-term (< 1 day) pumping tests, which facilitated the characterization of some of the fractures. The hydraulic properties were then used for other fractures that, according to geophysics and structural geology, belonged to the same families. Model validity was tested by blind prediction of a long-term (4 months) large-scale (1 km) pumping test from the mine, which yielded excellent agreement with the observations. Model results confirmed the sparsely fractured nature of the pluton, which has not been subjected to glacial loading–unloading cycles and whose waters are of Na-HCO3 type.


2010 ◽  
Vol 46 (2) ◽  
Author(s):  
Majdi R. Abou Najm ◽  
Jalal D. Jabro ◽  
William M. Iversen ◽  
Rabi H. Mohtar ◽  
Robert G. Evans

2017 ◽  
Vol 21 (11) ◽  
pp. 5503-5515 ◽  
Author(s):  
Hiroyuki Hirashima ◽  
Francesco Avanzi ◽  
Satoru Yamaguchi

Abstract. The heterogeneous movement of liquid water through the snowpack during precipitation and snowmelt leads to complex liquid water distributions that are important for avalanche and runoff forecasting. We reproduced the formation of capillary barriers and the development of preferential flow through snow using a three-dimensional water transport model, which was then validated using laboratory experiments of liquid water infiltration into layered, initially dry snow. Three-dimensional simulations assumed the same column shape and size, grain size, snow density, and water input rate as the laboratory experiments. Model evaluation focused on the timing of water movement, thickness of the upper layer affected by ponding, water content profiles and wet snow fraction. Simulation results showed that the model reconstructs relevant features of capillary barriers, including ponding in the upper layer, preferential infiltration far from the interface, and the timing of liquid water arrival at the snow base. In contrast, the area of preferential flow paths was usually underestimated and consequently the averaged water content in areas characterized by preferential flow paths was also underestimated. Improving the representation of preferential infiltration into initially dry snow is necessary to reproduce the transition from a dry-snow-dominant condition to a wet-snow-dominant one, especially in long-period simulations.


2005 ◽  
Vol 7 ◽  
pp. 41-44
Author(s):  
Bertel Nilsson ◽  
Jens Aamand ◽  
Ole Stig Jacobsen ◽  
René K. Juhler

Recent research on Danish groundwater has focused on clarifying the fate and transport of pesticides that leach through clayey till aquitards with low matrix permeability. Previously, these aquitards were considered as protective layers against contamination of underlying groundwater aquifers due to their low permeability characteristics. However, geological heterogeneities such as fractures and macropores have been recognised as preferential flow paths within low permeable clayey till (e.g. Beven & Germann 1982). The flow velocities within these preferential flow paths can be orders of magnitude higher than in the surrounding clay matrix and pose a major risk of transport of contaminants to the underlying aquifers (e.g. Nilsson et al. 2001). Previous studies of transport in fractured clayey till have focused on fully saturated conditions (e.g. Sidle et al. 1998; McKay et al. 1999). However, seasonal fluctuations of the groundwater table typically result in unsaturated conditions in the upper few metres of the clay deposits, resulting in different flow and transport conditions. Only a few experiments have examined the influence of unsaturated conditions on flow and solute (the dissolved inorganic and organic constituents) transport in fractured clayey till. These include smallscale laboratory column experiments on undisturbed soil monoliths (e.g. Jacobsen et al. 1997; Jørgensen et al. 1998), intermediate scale lysimeters (e.g. Fomsgaard et al. 2003) and field-scale tile drain experiments (e.g. Kjær et al. 2005). The different approaches each have limitations in terms of characterising flow and transport in fractured media. Laboratory studies of solute transport in soils (intact soil columns) are not exactly representative of field conditions due to variations in spatial variability and soil structure. In contrast, field studies hardly allow quantification of fluxes and mechanisms of transport. Column and lysimeter experiments are often limited in size, and tile-drain experiments on field scale do not provide spatial resolution and often have large uncertainties in mass balance calculations. Thus, in order to represent the overall natural fracture network systems on a field scale with respect to acquiring insights into flow and transport processes, the lysimeter needs to be larger than normal lysimeter size (< 1 m3). A modified large-scale lysimeter was therefore constructed by the Geological Survey of Denmark and Greenland (GEUS) at the Avedøre experimental field site 15 km south of Copenhagen (Fig. 1). This lysimeter consisted of an isolated block (3.5 ×3.5 ×3.3 m) of unsaturated fractured clayey till with a volume sufficient to represent the overall preferential flow paths (natural fracture network) within lowpermeable clayey till at a field scale.


1997 ◽  
Vol 28 (4-5) ◽  
pp. 307-328 ◽  
Author(s):  
Nils-Otto Kitterød ◽  
E. Langsholt ◽  
W. K. Wong ◽  
L. Gottschalk

The spatial distribution of soil moisture defines preferential flow paths in the unsaturated zone. Hence, three dimensional (3D) estimates of soil moisture are of great importance to understand transport of contaminants as well as remediation processes in the unsaturated zone. In this study 3D estimates conditioned on spatially frequent observations of soil moisture, have been obtained by kriging. The observations were divided into subdomains consistent with the local stratigraphy and directional semivariogram analysis was applied. It was found difficult to clearly identify a 3D semivariogram function in this case, but from a georadar survey two semivariogram functions were derived, describing two different sedimentological units. By conditioning the estimates of soil moisture on the sedimentological architecture computed by indicator kriging, more accurate estimates were achieved. These improvements were quantified by a ‘jackknife’ cross validation procedure. Besides the practical aspects of finding the most important flow paths estimates of soil moisture are valuable when validating unsaturated flow models.


2016 ◽  
Vol 24 (7) ◽  
pp. 1651-1662 ◽  
Author(s):  
Po-Yu Chuang ◽  
Yeeping Chia ◽  
Ya-Hsuan Liou ◽  
Mao-Hua Teng ◽  
Ching-Yi Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document