scholarly journals Lithospheric and sub-lithospheric deformation under the Borborema Province of NE Brazil from receiver function harmonic stripping

Author(s):  
Gaelle Lamarque ◽  
Jordi Julià

Abstract. The depth-dependent anisotropic structure of the lithosphere under the Borborema Province of northeast Brazil has been investigated through harmonic stripping of receiver functions developed at 39 stations in the region. This method retrieves the first (k = 1) and second (k = 2) degree harmonics of a receiver function dataset, which characterize seismic anisotropy beneath a seismic station. Anisotropic fabrics are in turn directly related to the deformation of the lithosphere from past and current tectonic processes. Our results reveal the presence of anisotropy within the crust and the lithospheric mantle throughout the entire Province, with the exception of a few stations in the continental interior that lack evidence for any anisotropic signatures. Most stations in the continental interior report consistent anisotropic orientations in the crust and lithospheric mantle, suggesting a dominant NE-SW pervasive deformation along lithospheric-scale shear zones developed during the Brasiliano-Pan African orogeny. The lack of anisotropy at a few stations along a NE-SW trend in the center on the Province is harder to explain, but might be related to heating of the lithosphere by an asthenospheric channel. Finally, several stations along the Atlantic coast reveal depth-dependent anisotropic orientations roughly (sub)perpendicular to the margin. These results suggest a more recent overprint, probably related to the presence of frozen anisotropy in the lithosphere due to stretching and rifting during the opening of the South Atlantic.

Solid Earth ◽  
2019 ◽  
Vol 10 (3) ◽  
pp. 893-905 ◽  
Author(s):  
Gaelle Lamarque ◽  
Jordi Julià

Abstract. The depth-dependent anisotropic structure of the lithosphere under the Borborema Province in northeast Brazil has been investigated via harmonic stripping of receiver functions developed at 39 stations in the region. This method retrieves the first (k=1) and second (k=2) degree harmonics of a receiver function dataset, which characterize seismic anisotropy beneath a seismic station. Anisotropic fabrics are in turn directly related to the deformation of the lithosphere from past and current tectonic processes. Our results reveal the presence of anisotropy within the crust and the lithospheric mantle throughout the entire province. Most stations in the continental interior report consistent anisotropic orientations in the crust and lithospheric mantle, suggesting a dominant northeast–southwest pervasive deformation along lithospheric-scale shear zones developed during the Brasiliano–Pan-African orogeny. Several stations aligned along a northeast–southwest trend located above the (now aborted) Mesozoic Cariri–Potiguar rift display large uncertainties for the fast-axis direction. This non-azimuthal anisotropy may be related to a complex anisotropic fabric resulting from a combination of deformation along the ancient collision between Precambrian blocks, Mesozoic extension and thermomechanical erosion dragging by sublithospheric flow. Finally, several stations along the Atlantic coast reveal depth-dependent anisotropic orientations roughly (sub)perpendicular to the margin. These results suggest a more recent overprint, probably related to the presence of frozen anisotropy in the lithosphere due to stretching and rifting during the opening of the South Atlantic.


2021 ◽  
Author(s):  
Ashwani Kant Tiwari ◽  
Arun Singh ◽  
Dipankar Saikia ◽  
Chandrani Singh

<p>The present research work interrogates the depth-dependent lithospheric dipping and anisotropic fabrics that characterize major fault and suture zone rheology, essential to understanding the lithospheric deformation and geodynamic process beneath southeastern Tibet. The depth-dependent anisotropic trend has been investigated via harmonic stripping of receiver functions (RFs) at 70 stations of the Eastern Syntaxis experiment, operated between 2003-2004. First, 3683 good quality P-RFs are computed from 174 teleseismic events. All the events are of magnitude ≥5.5 and recorded in the epicentral distribution of 30° to 90°. After that, the harmonic stripping technique is performed at each seismic station to retrieve the first (k = 1) and second (k =2) degree harmonics from the receiver function dataset. Our study also characterizes the type (fast or slow) of the symmetric axis. The upper crustal (0-20 km) anisotropic orientations are orthogonal to the major faults and suture zones of the area and suggest the structure-induced anisotropy. However, the anisotropic orientations in the mid-to-lower crust and uppermost mantle orientations suggest the ductile deformation due to material flow towards the east. Comparison from depth-dependent lithospheric trend and fast polarization directions obtained from the core-refracted and direct-S phases suggest the decoupled crust and lithospheric mantle beneath the area.  The distinct anisotropic trends in the Namche Barwa Metamorphic Massif (NBMM) indicate the northward indentation of the Indian crust beneath the Lhasa block. However, the lower crust and uppermost anisotropic orientation suggest the fragmented Indian lithosphere beneath the area. Our results add new constraints in understanding the type of strain and its causes in the region.</p>


2019 ◽  
Vol 220 (3) ◽  
pp. 1585-1603
Author(s):  
Zhenxin Xie ◽  
Vadim Levin ◽  
Qingju Wu

SUMMARY A uniformly spaced linear transect through the northeastern Tibetan Plateau was constructed using 54 stations from ChinaArray Phase II. We used a set of colocated earthquakes to form receiver function beams that were then used to construct a 2-D image of main converting boundaries in our region and to investigate lateral changes in main impedance contrasts along the transect. The image revealed obvious mid-crustal low-velocity zones beneath the Qilian Orogen and the Alxa Block. We developed a new procedure that uses harmonically decomposed receiver functions to characterize seismic anisotropy, and that can determine both the orientations of symmetry axes and their type (fast or slow). We tested our technique on a number of synthetic models, and subsequently applied it to the data from the transect. We found that: (1) within the upper crust the orientations of slow symmetry axes are nearly orthogonal to the strike directions of faults, and thus anisotropy is likely caused by the shape preferred orientation of fluid-saturated cracks or fractures and (2) together with the low-velocity zones revealed from receiver functions stacks, anisotropic layers in the middle-to-lower crust could be explained by the crustal channel flow that was proposed for this region by previous studies. The shear within the boundary layers of crustal flow forms anisotropy with symmetry axes parallel to the flow direction.


2011 ◽  
Vol 2011 ◽  
pp. 1-15 ◽  
Author(s):  
Masaki Kanao ◽  
Yusuke Usui ◽  
Tomofumi Inoue ◽  
Akira Yamada

Broadband seismic deployments have been carried out in the Lützow-Holm Bay region (LHB), Dronning Maud Land, East Antarctica. The recorded teleseismic and local events are of sufficient quality to image the structure and dynamics of the crust and mantle of the terrain. Passive seismic studies by receiver functions and shear wave splitting suggest a heterogeneous upper mantle. Depth variations in topography for upper mantle discontinuities were derived from long period receiver function, indicating a shallow depth discontinuity at 660 km beneath the continental area of LHB. These results provide evidence of paleo upwelling of the mantle plume associated with Gondwana break-up. SKS splitting analysis anticipated a relationship between “fossil” anisotropy in lithospheric mantle and past tectonics. Moreover, active source surveys (DSSs) imaged lithospheric mantle reflections involving regional tectonic stress during Pan-African and succeeding extension regime at the break-up. By combining the active and passive source studies of the mantle structure, we propose an evolution model of LHB for constructing the present mantle structure.


2021 ◽  
Author(s):  
Derya Keleş ◽  
Tuna Eken ◽  
Judith M. Confal ◽  
Tuncay Taymaz

<p>The fundamental knowledge on seismic anisotropy inferred from various data sets can enhance our understanding of its vertical resolution that is critical for a better interpretation of past and current dynamics and resultant crustal and mantle kinematics in the Hellenic Trench and its hinterland. To investigate the nature of deformation zones, we perform both local S-wave splitting (SWS) measurements and receiver functions (RFs) analysis. Our preliminary findings from the harmonic decomposition technique performed on radial and tangential RFs suggest relatively more substantial anisotropic signals in the lower crust and uppermost mantle with respect to upper and middle crustal structure in the region. Apparent anisotropic orientations obtained from RFs harmonic decomposition process show several consistencies with those discovered from local SWS measurements at selected stations. The actual anisotropic orientation for the structures, however, requires further modelling of the receiver functions obtained.</p>


2020 ◽  
Vol 224 (1) ◽  
pp. 290-305
Author(s):  
Fenitra Andriampenomanana ◽  
Andrew A Nyblade ◽  
Michael E Wysession ◽  
Raymond J Durrheim ◽  
Frederik Tilmann ◽  
...  

SUMMARY The lithosphere of Madagascar records a long series of tectonic processes. Structures initially inherited from the Pan-African Orogeny are overprinted by a series of extensional tectonic and magmatic events that began with the breakup of Gondwana and continued through to the present. Here, we present a Pn-tomography study in which Pn traveltimes are inverted to investigate the lateral variation of the seismic velocity and anisotropy within the uppermost mantle beneath Madagascar. Results show that the Pn velocities within the uppermost mantle vary by ±0.30 km s–1 about a mean of 8.10 km s–1. Low-Pn-velocity zones (<8.00 km s–1) are observed beneath the Cenozoic alkaline volcanic provinces in the northern and central regions. They correspond to thermally perturbed zones, where temperatures are estimated to be elevated by ∼100–300 K. Moderately low Pn velocities are found near the southern volcanic province and along an E–W belt in central Madagascar. This belt is located at the edge of a broader low S-velocity anomaly in the mantle imaged in a recent surface wave tomographic study. High-Pn-velocity zones (>8.20 km s–1) coincide with stable and less seismically active regions. The pattern of Pn anisotropy is very complex, with small-scale variations in both the amplitude and the fast-axis direction, and generally reflects the complicated tectonic history of Madagascar. Pn anisotropy and shear wave (SKS) splitting measurements show good correlations in the southern parts of Madagascar, indicating coherency in the vertical distribution of lithospheric deformation along Pan-African shear zone as well as coupling between the crust and mantle when the shear zones were active. In most other regions, discrepancies between Pn anisotropy and SKS measurements suggest that the seismic anisotropy in the uppermost mantle beneath Madagascar differs from the vertically integrated upper mantle anisotropy, implying a present-day vertical partitioning of the deformation. Pn anisotropy directions lack the coherent pattern expected for an incipient plate boundary within Madagascar proposed in some kinematic models of the region.


2003 ◽  
Vol 174 (1) ◽  
pp. 45-57 ◽  
Author(s):  
Sébastien Judenherc ◽  
Michel Granet ◽  
Jean-Pierre Brun ◽  
Georges Poupinet

Abstract The Hercynian belt is a continental collision orogen extending from south-west Iberia to the Bohemian Massif in Czech Republic. The successive stages of its formation are dated from 400 to 260 Ma.The Armorican Massif is a preserved segment of this orogen. It presents structures oriented NW-SE, parallel to the general Hercynian trend in this region. The massif is divided into three domains (North, Central, and South-Armorican domains) separated by two main shearzones, the North- and South-Armorican shear zones. As the Armorican Massif escaped from any important tectonic or thermal event since the end of Hercynian times, it is particularly suited for the study of an old collision orogen. Thus, in the framework of the GéoFrance3D-ARMOR2 project, two passive seismological experiments were conducted in 1997 and 1999 in the Armorican Massif. The main goals concerned the characterization of the deep geometry of both shear zones, the understanding of their geodynamic bearing on the long term evolution of the Hercynian belt, the study of the lithospheric deformation, and the 3D imaging of the Champtoceaux nappes.The data allow to model seismic anisotropy and to build a 3D P-wave velocity model beneath the Armorican Massif. Crustal images do not evidence any deep rooting of the Champtoceaux nappes in the lower crust. However, the upper mantle images show a clear signal interpreted as the relic of the northward subduction which lasted until Devonian (≈350 Ma). The results also show that the North-Armorican Shear Zone is limited at depth to the crust and topmost mantle, while the South-Armorican Shear Zone can be traced over the whole lithosphere.The strong velocity contrasts are associated to probable relic thermal anomalies but are also significantly related to chemical anomalies.


Author(s):  
E Tsang-Hin-Sun ◽  
M Evain ◽  
J Julia ◽  
G Lamarque ◽  
P Schnurle

Summary This study investigates the seismic structure and anisotropy in the crust beneath Madagascar and south-eastern Africa, using receiver functions. The understanding of seismic anisotropy is essential for imaging past and present deformation in the lithosphere-asthenosphere system. In the upper mantle, seismic anisotropy mainly results from the orientation of olivine, which deforms under tectonic (fossil anisotropy) or flow processes (in the asthenosphere). In the crust, the crystallographic alignment of amphiboles, feldspars(plagioclase) or micas or the alignment of heterogeneities such as fractures, add to a complex geometry, which results in challenges to understanding the Earth's shallow structure. The decomposition of receiver functions into back-azimuth harmonics allows to characterize orientations of lithospheric structure responsible for azimuthally-varying seismic signals, such as a dipping isotropic velocity contrasts or layers of azimuthal seismic anisotropy. By analysing receiver function harmonics from records of 48 permanent or temporary stations this study reveals significant azimuthally-varying signals within the upper crust of Madagascar and south-eastern Africa. At 30 stations crustal anisotropy dominates the harmonics while the signature of a dipping isotropic contrast is dominant at the remaining 18 stations. However, all stations’ back-azimuth harmonics show complex signals involving both dipping isotropic and shallow anisotropic contrasts or more than one source of anisotropy at shallow depth. Our calculated orientations for the crust are therefore interpreted as reflecting either the average or the interplay of several sources of azimuthally-varying signals depending of their strength. However, comparing information between stations allows us to draw the same conclusions regionally: in both southern Africa and Madagascar our measurements reflect the interplay between local, inherited structural heterogeneities and crustal seismic anisotropy generated by the current extensional stress field imposed by the southward propagation of the East-African Rift System. A final comparison of our crustal orientations with SKS orientations attributed to mantle deformation further probes the interplay of crustal and mantle anisotropy on SKS measurements.


2015 ◽  
Vol 36 (2) ◽  
pp. 89-107 ◽  
Author(s):  
Monika Wilde−Piórko

Abstract Receiver function provides the signature of sharp seismic discontinuities and the information about the shear wave (S−wave) velocity distribution beneath the seismic station. This information is very valuable in areas where any or few reflection and/or refraction studies are available and global and/or regional models give only rough information about the seismic velocities. The data recorded by broadband seismic stations have been analysed to investigate the crustal and upper mantle structure of the Svalbard Archipelago. Svalbard Archipelago is a group of islands located in Arctic, at the north−western part of the Barents Sea continental platform, which is bordered to the west and to the north by passive continental margins. The new procedure of parameterization and selection of receiver functions (RFs) has been proposed. The back−azimuthal sections of RF show a strong variation for the HSPB and KBS stations. Significant amplitudes of transversal component of RF (T−RF) for the HSPB station indicate a shallow dipping layer towards the southwest. The structure of the crust beneath the SPITS array seems to be less heterogeneous, with very low amplitudes of converted phase comparing to the KBS and HSPB stations. Forward modelling by trial−and−error method shows a division of the crust into 3-4 layers beneath all stations and layering of the uppermost mantle beneath the SPITS array and the HSPB stations. The thickness of the mantle transition zone is larger for western part of archipelago and smaller for eastern part comparing to iasp91 model.


Sign in / Sign up

Export Citation Format

Share Document