Crust-Mantle Kinematics in and around the Hellenic Arc Elucidated by Local Shear Wave Splitting and Receiver Function Analyses

Author(s):  
Derya Keleş ◽  
Tuna Eken ◽  
Judith M. Confal ◽  
Tuncay Taymaz

<p>The fundamental knowledge on seismic anisotropy inferred from various data sets can enhance our understanding of its vertical resolution that is critical for a better interpretation of past and current dynamics and resultant crustal and mantle kinematics in the Hellenic Trench and its hinterland. To investigate the nature of deformation zones, we perform both local S-wave splitting (SWS) measurements and receiver functions (RFs) analysis. Our preliminary findings from the harmonic decomposition technique performed on radial and tangential RFs suggest relatively more substantial anisotropic signals in the lower crust and uppermost mantle with respect to upper and middle crustal structure in the region. Apparent anisotropic orientations obtained from RFs harmonic decomposition process show several consistencies with those discovered from local SWS measurements at selected stations. The actual anisotropic orientation for the structures, however, requires further modelling of the receiver functions obtained.</p>

2019 ◽  
Vol 220 (3) ◽  
pp. 1585-1603
Author(s):  
Zhenxin Xie ◽  
Vadim Levin ◽  
Qingju Wu

SUMMARY A uniformly spaced linear transect through the northeastern Tibetan Plateau was constructed using 54 stations from ChinaArray Phase II. We used a set of colocated earthquakes to form receiver function beams that were then used to construct a 2-D image of main converting boundaries in our region and to investigate lateral changes in main impedance contrasts along the transect. The image revealed obvious mid-crustal low-velocity zones beneath the Qilian Orogen and the Alxa Block. We developed a new procedure that uses harmonically decomposed receiver functions to characterize seismic anisotropy, and that can determine both the orientations of symmetry axes and their type (fast or slow). We tested our technique on a number of synthetic models, and subsequently applied it to the data from the transect. We found that: (1) within the upper crust the orientations of slow symmetry axes are nearly orthogonal to the strike directions of faults, and thus anisotropy is likely caused by the shape preferred orientation of fluid-saturated cracks or fractures and (2) together with the low-velocity zones revealed from receiver functions stacks, anisotropic layers in the middle-to-lower crust could be explained by the crustal channel flow that was proposed for this region by previous studies. The shear within the boundary layers of crustal flow forms anisotropy with symmetry axes parallel to the flow direction.


Solid Earth ◽  
2019 ◽  
Vol 10 (3) ◽  
pp. 893-905 ◽  
Author(s):  
Gaelle Lamarque ◽  
Jordi Julià

Abstract. The depth-dependent anisotropic structure of the lithosphere under the Borborema Province in northeast Brazil has been investigated via harmonic stripping of receiver functions developed at 39 stations in the region. This method retrieves the first (k=1) and second (k=2) degree harmonics of a receiver function dataset, which characterize seismic anisotropy beneath a seismic station. Anisotropic fabrics are in turn directly related to the deformation of the lithosphere from past and current tectonic processes. Our results reveal the presence of anisotropy within the crust and the lithospheric mantle throughout the entire province. Most stations in the continental interior report consistent anisotropic orientations in the crust and lithospheric mantle, suggesting a dominant northeast–southwest pervasive deformation along lithospheric-scale shear zones developed during the Brasiliano–Pan-African orogeny. Several stations aligned along a northeast–southwest trend located above the (now aborted) Mesozoic Cariri–Potiguar rift display large uncertainties for the fast-axis direction. This non-azimuthal anisotropy may be related to a complex anisotropic fabric resulting from a combination of deformation along the ancient collision between Precambrian blocks, Mesozoic extension and thermomechanical erosion dragging by sublithospheric flow. Finally, several stations along the Atlantic coast reveal depth-dependent anisotropic orientations roughly (sub)perpendicular to the margin. These results suggest a more recent overprint, probably related to the presence of frozen anisotropy in the lithosphere due to stretching and rifting during the opening of the South Atlantic.


Geophysics ◽  
2009 ◽  
Vol 74 (5) ◽  
pp. B183-B195 ◽  
Author(s):  
K. De Meersman ◽  
J.-M. Kendall ◽  
M. van der Baan

We relocate 303 microseismic events recorded in 1998 by sensors in a single borehole in the North Sea Valhall oil field. A semiautomated array analysis method repicks the P- and S-wave arrival times and P-wave polarizations, which are needed to locate these events. The relocated sources are confined predominantly to a [Formula: see text]-thick zone just above the reservoir, and location uncertainties are half those of previous efforts. Multiplet analysis identifies 40 multiplet groups, which include 208 of the 303 events. The largest group contains 24 events, and five groups contain 10 or more events. Within each multiplet group, we further improve arrival-time picking through crosscorrelation, which enhances the relative accuracy of the relocated events and reveals that more than 99% of the seismic activity lies spatially in three distinct clusters. The spatial distribution of events and wave-form similarities reveal two faultlike structures that match well with north-northwest–south-southeast-trending fault planes interpreted from 3D surface seismic data. Most waveform differences between multiplet groups located on these faults can be attributed to S-wave phase content and polarity or P-to-S amplitude ratio. The range in P-to-S amplitude ratios observed on the faults is explained best in terms of varying source mechanisms. We also find a correlation between multiplet groups and temporal variations in seismic anisotropy, as revealed by S-wave splitting analysis. We explain these findings in the context of a cyclic recharge and dissipation of cap-rock stresses in response to production-driven compaction of the underlying oil reservoir. The cyclic nature of this mechanism drives the short-term variations in seismic anisotropy and the reactivation of microseismic source mechanisms over time.


2020 ◽  
Author(s):  
Derya Keleş ◽  
Tuna Eken ◽  
Andrea Licciardi ◽  
Tuncay Taymaz

<p>A proper understanding of crustal seismic anisotropy beneath the tectonically complex northwestern part of the North Anatolian Fault Zone (NAFZ) will shed light into the depth extent of deformation zones. To investigate the seismic anisotropy in the crustal part of the NAFZ, we applied the harmonic decomposition technique on receiver functions from teleseismic earthquakes (with epicentral distances between 30° and 90°) recorded at the Dense Array for North Anatolia (DANA) seismic network. Harmonic coefficients, k=0, k=1, and k=2 were obtained by applying the harmonic decomposition method to the depth migrated receiver functions. Results from k=0 harmonics suggest south to north (e.g. from Sakarya Zone to Istanbul Zone) increase in crustal thickness. The depth variations of energy associated with k=1 and k=2 harmonic components imply significant lateral variation. For instance, the energy calculated for k=1 harmonics in the north (Istanbul Zone) indicates that seismic anisotropy is likely concentrated in the upper crust (within the first 15 km). However, further south, the signature of anisotropy in Armutlu-Almacik and Sakarya Zones becomes more significant in close proximity to the fault zone and dominates at greater (15-30 km and 30-60 km). Furthermore, k=2 harmonic energy maps exhibit relatively high intensities nearby the fault for all depth ranges.</p>


2020 ◽  
Author(s):  
Mohsen Azqandi ◽  
Mohammad Reza Abbassi ◽  
Meysam Mahmoodabadi ◽  
Ahmad Sadidkhouy

<p>This study concerns crustal anisotropy at 16 permanent seismic stations to investigate preferentially aligned cracks or structures and their relation to the stress-state in the South Central Alborz (northern Iran). We consider plunging anisotropy and dipping interfaces of multiple layers using harmonic functions to correct the arrival time variations of <em>Ps</em> phases from different back-azimuths.</p><p>The dominant fast orientation of integrated crustal anisotropy strikes NE, almost parallel to the stress direction in the upper crust. The magnitude of crustal anisotropy is found to be in range of 0.1 s to 0.5 s. In some stations, intracrustal interface is observed, for which we analyzed harmonic decomposition of receiver functions to consider anisotropy in the upper crust. Upper crustal anisotropy strikes NE, close to the principal stress direction, indicating that stress in the upper crust plays a major role in producing anisotropy and deformation. In a few stations, crustal anisotropy display different directions rather than NE, which maybe controlled by cracks and fractures of dominant faults.</p><p>Keywords: Anisotropy, Receiver function, harmonic decomposition, Northern Iran.</p>


2021 ◽  
Author(s):  
Ashwani Kant Tiwari ◽  
Arun Singh ◽  
Dipankar Saikia ◽  
Chandrani Singh

<p>The present research work interrogates the depth-dependent lithospheric dipping and anisotropic fabrics that characterize major fault and suture zone rheology, essential to understanding the lithospheric deformation and geodynamic process beneath southeastern Tibet. The depth-dependent anisotropic trend has been investigated via harmonic stripping of receiver functions (RFs) at 70 stations of the Eastern Syntaxis experiment, operated between 2003-2004. First, 3683 good quality P-RFs are computed from 174 teleseismic events. All the events are of magnitude ≥5.5 and recorded in the epicentral distribution of 30° to 90°. After that, the harmonic stripping technique is performed at each seismic station to retrieve the first (k = 1) and second (k =2) degree harmonics from the receiver function dataset. Our study also characterizes the type (fast or slow) of the symmetric axis. The upper crustal (0-20 km) anisotropic orientations are orthogonal to the major faults and suture zones of the area and suggest the structure-induced anisotropy. However, the anisotropic orientations in the mid-to-lower crust and uppermost mantle orientations suggest the ductile deformation due to material flow towards the east. Comparison from depth-dependent lithospheric trend and fast polarization directions obtained from the core-refracted and direct-S phases suggest the decoupled crust and lithospheric mantle beneath the area.  The distinct anisotropic trends in the Namche Barwa Metamorphic Massif (NBMM) indicate the northward indentation of the Indian crust beneath the Lhasa block. However, the lower crust and uppermost anisotropic orientation suggest the fragmented Indian lithosphere beneath the area. Our results add new constraints in understanding the type of strain and its causes in the region.</p>


2014 ◽  
Vol 51 (4) ◽  
pp. 407-417 ◽  
Author(s):  
H.S. Kim ◽  
J.F. Cassidy ◽  
S.E. Dosso ◽  
H. Kao

This paper presents results of a passive-source seismic mapping study in the Nechako–Chilcotin plateau of central British Columbia, with the ultimate goal of contributing to assessments of hydrocarbon and mineral potential of the region. For the present study, an array of nine seismic stations was deployed in 2006–2007 to sample a wide area of the Nechako–Chilcotin plateau. The specific goal was to map the thickness of the sediments and volcanic cover, and the overall crustal thickness and structural geometry beneath the study area. This study utilizes recordings of about 40 distant earthquakes from 2006 to 2008 to calculate receiver functions, and constructs S-wave velocity models for each station using the Neighbourhood Algorithm inversion. The surface sediments are found to range in thickness from about 0.8 to 2.7 km, and the underlying volcanic layer from 1.8 to 4.7 km. Both sediments and volcanic cover are thickest in the central portion of the study area. The crustal thickness ranges from 22 to 36 km, with an average crustal thickness of about 30–34 km. A consistent feature observed in this study is a low-velocity zone at the base of the crust. This study complements other recent studies in this area, including active-source seismic studies and magnetotelluric measurements, by providing site-specific images of the crustal structure down to the Moho and detailed constraints on the S-wave velocity structure.


2018 ◽  
Vol 12 (5) ◽  
pp. 1715-1734 ◽  
Author(s):  
Johanna Kerch ◽  
Anja Diez ◽  
Ilka Weikusat ◽  
Olaf Eisen

Abstract. One of the great challenges in glaciology is the ability to estimate the bulk ice anisotropy in ice sheets and glaciers, which is needed to improve our understanding of ice-sheet dynamics. We investigate the effect of crystal anisotropy on seismic velocities in glacier ice and revisit the framework which is based on fabric eigenvalues to derive approximate seismic velocities by exploiting the assumed symmetry. In contrast to previous studies, we calculate the seismic velocities using the exact c axis angles describing the orientations of the crystal ensemble in an ice-core sample. We apply this approach to fabric data sets from an alpine and a polar ice core. Our results provide a quantitative evaluation of the earlier approximative eigenvalue framework. For near-vertical incidence our results differ by up to 135 m s−1 for P-wave and 200 m s−1 for S-wave velocity compared to the earlier framework (estimated 1 % difference in average P-wave velocity at the bedrock for the short alpine ice core). We quantify the influence of shear-wave splitting at the bedrock as 45 m s−1 for the alpine ice core and 59 m s−1 for the polar ice core. At non-vertical incidence we obtain differences of up to 185 m s−1 for P-wave and 280 m s−1 for S-wave velocities. Additionally, our findings highlight the variation in seismic velocity at non-vertical incidence as a function of the horizontal azimuth of the seismic plane, which can be significant for non-symmetric orientation distributions and results in a strong azimuth-dependent shear-wave splitting of max. 281 m s−1 at some depths. For a given incidence angle and depth we estimated changes in phase velocity of almost 200 m s−1 for P wave and more than 200 m s−1 for S wave and shear-wave splitting under a rotating seismic plane. We assess for the first time the change in seismic anisotropy that can be expected on a short spatial (vertical) scale in a glacier due to strong variability in crystal-orientation fabric (±50 m s−1 per 10 cm). Our investigation of seismic anisotropy based on ice-core data contributes to advancing the interpretation of seismic data, with respect to extracting bulk information about crystal anisotropy, without having to drill an ice core and with special regard to future applications employing ultrasonic sounding.


Sign in / Sign up

Export Citation Format

Share Document