scholarly journals Coherent diffraction imaging for enhanced fault and fracture network characterization

2020 ◽  
Author(s):  
Benjamin Schwarz ◽  
Charlotte M. Krawczyk

Abstract. Faults and fractures represent unique features of the solid Earth and are especially pervasive in the shallow crust. Aside from directly relating to crustal dynamics and the systematic assessment of associated risk, fault and fracture networks enable the efficient migration of fluids and, therefore, have a direct impact on concrete topics relevant to society, including climate-change mitigating measures like CO2 sequestration or geothermal exploration and production. Due to their small-scale complexity, fault zones and fracture networks are typically poorly resolved and their presence can often only be inferred indirectly in seismic and ground-penetrating radar (GPR) subsurface reconstructions. We suggest a largely data-driven framework for the direct imaging of these features by making use of the faint and still often under-explored diffracted portion of the wavefield. Finding inspiration in the fields of optics and visual perception, we introduce two different conceptual pathways for coherent diffraction imaging and discuss respective advantages and disadvantages in different contexts of application. At the heart of both of these strategies lies the assessment of data coherence, for which a range of quantitative measures is introduced. To illustrate the approaches versatility and effectiveness for high-resolution geophysical imaging, several seismic and GPR field data examples are presented, in which the diffracted wavefield sheds new light on crustal features like fluvial channels, erosional surfaces, and intricate fault and fracture networks on land and in the marine environment.

Solid Earth ◽  
2020 ◽  
Vol 11 (5) ◽  
pp. 1891-1907
Author(s):  
Benjamin Schwarz ◽  
Charlotte M. Krawczyk

Abstract. Faults and fractures represent unique features of the solid Earth and are especially pervasive in the shallow crust. Aside from directly relating to crustal dynamics and the systematic assessment of associated risk, fault and fracture networks enable the efficient migration of fluids and therefore have a direct impact on concrete topics relevant to society, including climate-change-mitigating measures like CO2 sequestration or geothermal exploration and production. Due to their small-scale complexity, fault zones and fracture networks are typically poorly resolved, and their presence can often only be inferred indirectly in seismic and ground-penetrating radar (GPR) subsurface reconstructions. We suggest a largely data-driven framework for the direct imaging of these features by making use of the faint and still often underexplored diffracted portion of the wave field. Finding inspiration in the fields of optics and visual perception, we introduce two different conceptual pathways for coherent diffraction imaging and discuss respective advantages and disadvantages in different contexts of application. At the heart of both of these strategies lies the assessment of data coherence, for which a range of quantitative measures is introduced. To illustrate the versatility and effectiveness of the approach for high-resolution geophysical imaging, several seismic and GPR field data examples are presented, in which the diffracted wave field sheds new light on crustal features like fluvial channels, erosional surfaces, and intricate fault and fracture networks on land and in the marine environment.


Nano Letters ◽  
2021 ◽  
Author(s):  
Tomoya Kawaguchi ◽  
Vladimir Komanicky ◽  
Vitalii Latyshev ◽  
Wonsuk Cha ◽  
Evan R. Maxey ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Rujia Li ◽  
Liangcai Cao

AbstractPhase retrieval seeks to reconstruct the phase from the measured intensity, which is an ill-posed problem. A phase retrieval problem can be solved with physical constraints by modulating the investigated complex wavefront. Orbital angular momentum has been recently employed as a type of reliable modulation. The topological charge l is robust during propagation when there is atmospheric turbulence. In this work, topological modulation is used to solve the phase retrieval problem. Topological modulation offers an effective dynamic range of intensity constraints for reconstruction. The maximum intensity value of the spectrum is reduced by a factor of 173 under topological modulation when l is 50. The phase is iteratively reconstructed without a priori knowledge. The stagnation problem during the iteration can be avoided using multiple topological modulations.


2021 ◽  
Vol 103 (21) ◽  
Author(s):  
Matthew J. Wilkin ◽  
Siddharth Maddali ◽  
Stephan O. Hruszkewycz ◽  
Anastasios Pateras ◽  
Richard L. Sandberg ◽  
...  

2021 ◽  
Vol 140 ◽  
pp. 106530
Author(s):  
Yuanyuan Liu ◽  
Qingwen Liu ◽  
You Li ◽  
Junyong Zhang ◽  
Zuyuan He

2011 ◽  
Author(s):  
Jonathan Potier ◽  
Sebastien Fricker ◽  
Mourad Idir

2009 ◽  
Vol 131 (10) ◽  
Author(s):  
Clifford K. Ho ◽  
Bill W. Arnold ◽  
Susan J. Altman

The drift-shadow effect describes capillary diversion of water flow around a drift or cavity in porous or fractured rock, resulting in lower water flux directly beneath the cavity. This paper presents computational simulations of drift-shadow experiments using dual-permeability models, similar to the models used for performance assessment analyses of flow and seepage in unsaturated fractured tuff at Yucca Mountain. Comparisons were made between the simulations and experimental data from small-scale drift-shadow tests. Results showed that the dual-permeability models captured the salient trends and behavior observed in the experiments, but constitutive relations (e.g., fracture capillary-pressure curves) can significantly affect the simulated results. Lower water flux beneath the drift was observed in both the simulations and tests, and fingerlike flow patterns were seen to exist with lower simulated capillary pressures. The dual-permeability models used in this analysis were capable of simulating these processes. However, features such as irregularities along the top of the drift (e.g., from roof collapse) and heterogeneities in the fracture network may reduce the impact of capillary diversion and drift shadow. An evaluation of different meshes showed that at the grid refinement used, a comparison between orthogonal and unstructured meshes did not result in large differences.


2018 ◽  
Vol 2 (8) ◽  
Author(s):  
S. O. Hruszkewycz ◽  
S. Maddali ◽  
C. P. Anderson ◽  
W. Cha ◽  
K. C. Miao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document