scholarly journals Comments to: soil -2019-41 Strong warming of subarctic forest soil deteriorated soil structure via carbon loss – Indications form organic matter Christopher Poeplau, Páll Sigurðsson, Bjarni D Sigurðsson

2019 ◽  
Author(s):  
Anonymous
2019 ◽  
Author(s):  
Christopher Poeplau ◽  
Páll Sigurðsson ◽  
Bjarni D. Sigurðsson

Abstract. Net loss of soil organic carbon (SOC) from terrestrial ecosystems is a likely consequence of global warming and this may affect key soil functions. Strongest changes in temperature are expected to occur at high northern latitudes, with boreal forest and tundra as prevailing land-cover types. However, specific ecosystem responses to warming are understudied. We used a natural geothermal soil warming gradient in an Icelandic spruce forest (0–17.5 °C warming intensity) to assess changes in SOC content in 0–10 cm (topsoil) and 20–30 cm (subsoil) after 10 years of soil warming. Five different SOC fractions were isolated and the amount of stable aggregates (63–2000 µm) was assessed to link SOC to soil structure changes. Results were compared to an adjacent, previously investigated warmed grassland. Soil warming had depleted SOC in the forest soil by −2.7 g kg−1 °C−1 (−3.6 % °C−1) in the topsoil and −1.6 g kg−1 °C−1 (−4.5 % °C−1) in the subsoil. Distribution of SOC in different fractions was significantly altered, with particulate organic matter and SOC in sand and stable aggregates being relatively depleted and SOC attached to silt and clay being relatively enriched in warmed soils. The major reason for this shift was aggregate break-down: topsoil aggregate mass proportion was reduced from 60.7 ± 2.2 % in the unwarmed reference to 28.9 ± 4.6 % in the most warmed soil. Across both depths, loss of one unit SOC caused a depletion of 4.5 units aggregated soil, which strongly affected bulk density (R2 = 0.91 when correlated to SOC and R2 = 0.51 when correlated to soil mass in stable aggregates). The proportion of water extractable carbon increased with decreasing aggregation, indicating an indirect SOC protective effect of aggregates > 63 µm. Topsoil changes in total SOC and fraction distribution were more pronounced in the forest than in the adjacent warmed grassland soils, due to higher and more labile initial SOC. However, no ecosystem effect was observed in the response of subsoil SOC and fraction distribution. Whole profile differences across ecosystems might thus be small. Changes in soil structure upon warming should be studied more deeply and taken into consideration when interpreting or modelling biotic responses to warming.


2021 ◽  
Author(s):  
Tino Peplau ◽  
Julia Schroeder ◽  
Edward Gregorich ◽  
Christopher Poeplau
Keyword(s):  

1986 ◽  
Vol 66 (2) ◽  
pp. 273-285 ◽  
Author(s):  
J. F. DORMAAR ◽  
C. W. LINDWALL ◽  
G. C. KOZUB

A field was artificially eroded by levelling in 1957 and then continuously cropped to barley for 7 yr. Subsequently, a wheat-fallow experiment was conducted from 1965 to 1979 to determine the effects of four fertilizer treatments and green manure (yellow sweet clover) on restoring the productivity to soil that had been "eroded" to various depths. After 22 yr and 14 crops, the productivity of the land from which soil was removed has been improved but not fully restored. Although green manuring with yellow sweet clover improved soil structure, wheat yields were not improved because of competition for soil moisture and poorer in-crop weed control in this part of the rotation. The addition of 45 kg N plus 90 kg P2O5 per hectare in each crop year to sites from which 8–10, 10–20, or 46 + cm of soil had been removed resulted in yield increases of 18, 46, and 70%, respectively, over the unfertilized check of each treatment; the average yields were 104, 91, and 70%, respectively, of the undisturbed, unfertilized (check) treatment. On "erosion" treatments where only 8–10 cm of soil were removed, 45 kg N plus 22 kg P2O5 per hectare were sufficient to restore the productivity. Precipitation apparently had a greater effect than fertilizer application on wheat yields. The loss of organic matter and associated soil structure characteristics seemed to be critical factors contributing to yield losses associated with soil erosion. These results show that it is more practical to use management practices that prevent soil erosion than to adopt the practices required to restore eroded soil. Key words: Soil erosion, topsoil loss, water-stable aggregates, soil organic matter, green manure, precipitation


2020 ◽  
Vol 21 (2) ◽  
pp. 160-168
Author(s):  
N. A. Kodochilova ◽  
T. S. Buzynina ◽  
L. D. Varlamova ◽  
E. A. Katerova

The studies on assessment of changes in the content and composition of soil organic matter under the influence of the systematic use of mineral fertilizers (NPK)1, (NPK)2, (NPK)3 against the background of the aftereffect of single liming in doses of 1.0 and 2.0 h. a. (control – variants without fertilizers and lime) were conducted in the conditions of the Nizhny Novgorod region in a long – term stationary experiment on light-grey forest soil. The research was carried out upon comple-tion of the fifth rotation of the eight-field crop rotation. The results of the study showed that for 40 years (from 1978 to 2018) the humus content in the soil (0-20 cm) decreased by 0.19-0.52 abs. % in variants as compared to the original (1.60 %); though, humus mineralization was less evident against the background of long-term use of mineral fertilizers compared to non-fertilized control. The higher humus content in the topsoil was noted in the variants with minimal (NPK)1 and increased (NPK)2 doses of fertilizer – 1.41 and 1.25 %, respectively. The humus content in non-fertilized soil and when applying high (NPK)3 doses of mineral fertilizers was almost identical – 1.08-1.09 %. The predominant group in the composition of humus were humic acids, the content of which in the experiment on average was 37.8 % of the total carbon with an evident decrease from 42.6 % in the control to 31.8% when applying increased doses of mineral fertilizers. The aftereffect of liming, carried out in 1978, was unstable and did not significantly affect the content and composition of soil organic matter.


Sign in / Sign up

Export Citation Format

Share Document