scholarly journals Strong warming of subarctic forest soil deteriorated soil structure via carbon loss – Indications from organic matter fractionation

2019 ◽  
Author(s):  
Christopher Poeplau ◽  
Páll Sigurðsson ◽  
Bjarni D. Sigurðsson

Abstract. Net loss of soil organic carbon (SOC) from terrestrial ecosystems is a likely consequence of global warming and this may affect key soil functions. Strongest changes in temperature are expected to occur at high northern latitudes, with boreal forest and tundra as prevailing land-cover types. However, specific ecosystem responses to warming are understudied. We used a natural geothermal soil warming gradient in an Icelandic spruce forest (0–17.5 °C warming intensity) to assess changes in SOC content in 0–10 cm (topsoil) and 20–30 cm (subsoil) after 10 years of soil warming. Five different SOC fractions were isolated and the amount of stable aggregates (63–2000 µm) was assessed to link SOC to soil structure changes. Results were compared to an adjacent, previously investigated warmed grassland. Soil warming had depleted SOC in the forest soil by −2.7 g kg−1 °C−1 (−3.6 % °C−1) in the topsoil and −1.6 g kg−1 °C−1 (−4.5 % °C−1) in the subsoil. Distribution of SOC in different fractions was significantly altered, with particulate organic matter and SOC in sand and stable aggregates being relatively depleted and SOC attached to silt and clay being relatively enriched in warmed soils. The major reason for this shift was aggregate break-down: topsoil aggregate mass proportion was reduced from 60.7 ± 2.2 % in the unwarmed reference to 28.9 ± 4.6 % in the most warmed soil. Across both depths, loss of one unit SOC caused a depletion of 4.5 units aggregated soil, which strongly affected bulk density (R2 = 0.91 when correlated to SOC and R2 = 0.51 when correlated to soil mass in stable aggregates). The proportion of water extractable carbon increased with decreasing aggregation, indicating an indirect SOC protective effect of aggregates > 63 µm. Topsoil changes in total SOC and fraction distribution were more pronounced in the forest than in the adjacent warmed grassland soils, due to higher and more labile initial SOC. However, no ecosystem effect was observed in the response of subsoil SOC and fraction distribution. Whole profile differences across ecosystems might thus be small. Changes in soil structure upon warming should be studied more deeply and taken into consideration when interpreting or modelling biotic responses to warming.

SOIL ◽  
2020 ◽  
Vol 6 (1) ◽  
pp. 115-129 ◽  
Author(s):  
Christopher Poeplau ◽  
Páll Sigurðsson ◽  
Bjarni D. Sigurdsson

Abstract. The net loss of soil organic carbon (SOC) from terrestrial ecosystems is a likely consequence of global warming and may affect key soil functions. The strongest changes in temperature are expected to occur at high northern latitudes, with forest and tundra as prevailing land cover types. However, specific soil responses to warming in different ecosystems are currently understudied. In this study, we used a natural geothermal soil warming gradient (0–17.5 ∘C warming intensity) in an Icelandic spruce forest on Andosol to assess changes in the SOC content between 0 and 10 cm (topsoil) and between 20 and 30 cm (subsoil) after 10 years of soil warming. Five different SOC fractions were isolated, and their redistribution and the amount of stable aggregates were assessed to link SOC to changes in the soil structure. The results were compared to an adjacent, previously investigated warmed grassland. Soil warming depleted the SOC content in the forest soil by −2.7 g kg−1 ∘C−1 (−3.6 % ∘C−1) in the topsoil and −1.6 g kg−1 ∘C−1 (−4.5 % ∘C−1) in the subsoil. The distribution of SOC in different fractions was significantly altered, with particulate organic matter and SOC in sand and stable aggregates being relatively depleted and SOC attached to silt and clay being relatively enriched in warmed soils. The major reason for this shift was aggregate breakdown: the topsoil aggregate mass proportion was reduced from 60.7±2.2 % in the unwarmed reference to 28.9±4.6 % in the most warmed soil. Across both depths, the loss of one unit of SOC caused a depletion of 4.5 units of aggregated soil, which strongly affected the bulk density (an R2 value of 0.91 and p<0.001 when correlated with SOC, and an R2 value of 0.51 and p<0.001 when correlated with soil mass in stable aggregates). The proportion of water-extractable carbon increased with decreasing aggregation, which might indicate an indirect protective effect of aggregates larger than 63 µm on SOC. Topsoil changes in the total SOC content and fraction distribution were more pronounced in the forest than in the adjacent warmed grassland soils, due to higher and more labile initial SOC. However, no ecosystem effect was observed on the warming response of the subsoil SOC content and fraction distribution. Thus, whole profile differences across ecosystems might be small. Changes in the soil structure upon warming should be studied more deeply and taken into consideration when interpreting or modelling biotic responses to warming.


2016 ◽  
Vol 103 ◽  
pp. 300-307 ◽  
Author(s):  
Jörg Schnecker ◽  
Werner Borken ◽  
Andreas Schindlbacher ◽  
Wolfgang Wanek

2016 ◽  
Vol 17 (2) ◽  
pp. 391-401 ◽  
Author(s):  
VLADIM�R �IMANSK� ◽  
Nora Poll�kov� ◽  
Jerzy JONCZAK ◽  
Michal JANKOWSKI

1986 ◽  
Vol 66 (2) ◽  
pp. 273-285 ◽  
Author(s):  
J. F. DORMAAR ◽  
C. W. LINDWALL ◽  
G. C. KOZUB

A field was artificially eroded by levelling in 1957 and then continuously cropped to barley for 7 yr. Subsequently, a wheat-fallow experiment was conducted from 1965 to 1979 to determine the effects of four fertilizer treatments and green manure (yellow sweet clover) on restoring the productivity to soil that had been "eroded" to various depths. After 22 yr and 14 crops, the productivity of the land from which soil was removed has been improved but not fully restored. Although green manuring with yellow sweet clover improved soil structure, wheat yields were not improved because of competition for soil moisture and poorer in-crop weed control in this part of the rotation. The addition of 45 kg N plus 90 kg P2O5 per hectare in each crop year to sites from which 8–10, 10–20, or 46 + cm of soil had been removed resulted in yield increases of 18, 46, and 70%, respectively, over the unfertilized check of each treatment; the average yields were 104, 91, and 70%, respectively, of the undisturbed, unfertilized (check) treatment. On "erosion" treatments where only 8–10 cm of soil were removed, 45 kg N plus 22 kg P2O5 per hectare were sufficient to restore the productivity. Precipitation apparently had a greater effect than fertilizer application on wheat yields. The loss of organic matter and associated soil structure characteristics seemed to be critical factors contributing to yield losses associated with soil erosion. These results show that it is more practical to use management practices that prevent soil erosion than to adopt the practices required to restore eroded soil. Key words: Soil erosion, topsoil loss, water-stable aggregates, soil organic matter, green manure, precipitation


Author(s):  
David J Beerling ◽  
Michael Harfoot ◽  
Barry Lomax ◽  
John A Pyle

The discovery of mutated palynomorphs in end-Permian rocks led to the hypothesis that the eruption of the Siberian Traps through older organic-rich sediments synthesized and released massive quantities of organohalogens, which caused widespread O 3 depletion and allowed increased terrestrial incidence of harmful ultraviolet-B radiation (UV-B, 280–315 nm; Visscher et al . 2004 Proc. Natl Acad. Sci. USA 101 , 12 952–12 956). Here, we use an extended version of the Cambridge two-dimensional chemistry–transport model to evaluate quantitatively this possibility along with two other potential causes of O 3 loss at this time: (i) direct effects of HCl release by the Siberian Traps and (ii) the indirect release of organohalogens from dispersed organic matter. According to our simulations, CH 3 Cl released from the heating of coals alone caused comparatively minor O 3 depletion (5–20% maximum) because this mechanism fails to deliver sufficiently large amounts of Cl into the stratosphere. The unusual explosive nature of the Siberian Traps, combined with the direct release of large quantities of HCl, depleted the model O 3 layer in the high northern latitudes by 33–55%, given a main eruptive phase of less than or equal to 200 kyr. Nevertheless, O 3 depletion was most extensive when HCl release from the Siberian Traps was combined with massive CH 3 Cl release synthesized from a large reservoir of dispersed organic matter in Siberian rocks. This suite of model experiments produced column O 3 depletion of 70–85% and 55–80% in the high northern and southern latitudes, respectively, given eruption durations of 100–200 kyr. On longer eruption time scales of 400–600 kyr, corresponding O 3 depletion was 30–40% and 20–30%, respectively. Calculated year-round increases in total near-surface biologically effective (BE) UV-B radiation following these reductions in O 3 layer range from 30–60 (kJ m −2  d −1 ) BE up to 50–100 (kJ m −2  d −1 ) BE . These ranges of daily UV-B doses appear sufficient to exert mutagenic effects on plants, especially if sustained over tens of thousands of years, unlike either rising temperatures or SO 2 concentrations.


2021 ◽  
Author(s):  
A. L. Romero-Olivares ◽  
E. W. Morrison ◽  
A. Pringle ◽  
S. D. Frey

AbstractFungi are mediators of the nitrogen and carbon cycles in terrestrial ecosystems. Examining how nitrogen uptake and organic matter decomposition potential differs in fungi can provide insight into the underlying mechanisms driving fungal ecological processes and ecosystem functioning. In this study, we assessed the frequency of genes encoding for specific enzymes that facilitate nitrogen uptake and organic matter decomposition in 879 fungal genomes with fungal taxa grouped into trait-based categories. Our linked gene-trait data approach revealed that gene frequencies vary across and within trait-based groups and that trait-based categories differ in trait space. We present two examples of how this linked gene-trait approach can be used to address ecological questions. First, we show that this type of approach can help us better understand, and potentially predict, how fungi will respond to environmental stress. Specifically, we found that trait-based categories with high nitrogen uptake gene frequency increased in relative abundance when exposed to high soil nitrogen enrichment. Second, by comparing frequencies of nitrogen uptake and organic matter decomposition genes, we found that most ectomycorrhizal fungi in our dataset have similar gene frequencies to brown rot fungi. This demonstrates that gene-trait data approaches can shed light on potential evolutionary trajectories of life history traits in fungi. We present a framework for exploring nitrogen uptake and organic matter decomposition gene frequencies in fungal trait-based groups and provide two concise examples on how to use our framework to address ecological questions from a mechanistic perspective.


Sign in / Sign up

Export Citation Format

Share Document