scholarly journals Supplementary material to "Short-term effects of fertilization on dissolved organic matter (DOM) in soil leachate"

Author(s):  
Alexandra Tiefenbacher ◽  
Gabriele Weigelhofer ◽  
Andreas Klik ◽  
Matthias Pucher ◽  
Jakob Santner ◽  
...  
Water ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1617 ◽  
Author(s):  
Alexandra Tiefenbacher ◽  
Gabriele Weigelhofer ◽  
Andreas Klik ◽  
Matthias Pucher ◽  
Jakob Santner ◽  
...  

Besides the importance of dissolved organic matter (DOM) in soil biogeochemical processes, there is still a debate on how agricultural intensification affects the leaching of terrestrial DOM into adjacent aquatic ecosystems. In order to close this linkage, we conducted a short-term (45 day) lysimeter experiment with silt loam and sandy loam undisturbed/intact soil cores. Mineral (calcium ammonium nitrate) or organic (pig slurry) fertilizer was applied on the soil surface with a concentration equivalent to 130 kg N ha−1. On average, amounts of leached DOC over 45 days ranged between 20.4 mg (silt loam, mineral fertilizer) and 34.4 mg (sandy loam, organic fertilizer). Both, mineral and organic fertilization of a silt loam reduced concentration of dissolved organic carbon (DOC) in the leachate and shifted its composition towards a microbial-like signature (BIX) with a higher aromaticity (Fi) and a lower molecular size (E2:E3). However, in sandy loam only mineral fertilization affected organic matter leaching. There, lowered DOC concentrations with a smaller molecular size (E2:E3) could be detected. The overall effect of fertilization on DOC leaching and DOM composition was interrelated with soil texture and limited to first 12 days. Our results highlight the need for management measures, which prevent or reduce fast flow paths leading soil water directly into aquatic systems, such as surface flow, fast subsurface flow, or drainage water.


2020 ◽  
Author(s):  
Alexandra Tiefenbacher ◽  
Gabriele Weigelhofer ◽  
Andreas Klik ◽  
Matthias Pucher ◽  
Jakob Santner ◽  
...  

Abstract. Besides the importance of dissolved organic matter (DOM) in soil biogeochemical processes, there is still a debate on how agricultural intensification affects the composition and concentration of dissolved organic matter leached from soils into adjacent aquatic ecosystems. In order to investigate the immediate response of DOM leaching to fertilization, we conducted a short-term (45 day) lysimeter experiment with undisturbed silt loam and loamy sand soil cores. Mineral (calcium ammonium nitrate) or organic (pig slurry) fertilizer was applied on the soil surface with a concentration equivalent to 130 kg N ha−1. After fertilization, soil leachate was collected in 6-days intervals. Dissolved organic carbon concentrations (DOC) were measured with gas chromatography, while shifts in DOM composition were analysed using absorbance and excitation- emission fluorescence indices from peak-picking as well as from PARAFAC analysis. During the first 12 days, fertilization of a silt loam reduced DOC concentrations in the leachate and shifted its composition towards more microbial- like compounds. Additionally, the discrepancy in DOM composition between fertilizer and control treatments of a silt loam increased with time. However, in loamy sand only mineral fertilization affected organic matter leaching and decreased DOC concentrations in the leachate during the first 12 days. Furthermore, mineral fertilization of the loamy sand led to DOM compounds with low molecular size in the first 12 days. Our results show that fertilization tends to increase microbial transformed DOM, while it reduces leached DOC concentrations. Furthermore, the magnitude of fertilization on DOC concentrations and DOM composition was highly depending on the soil texture they originate from. However, in our set-up, the experimental soil units were restricted to a soil depth of 16 cm (Ap horizon). At ecosystem level, a sufficiently long soil passage might mitigate the impact of fertilization on soil DOM.


2016 ◽  
Author(s):  
Thibault Lambert ◽  
Cristian R. Teodoru ◽  
Frank C. Nyoni ◽  
Steven Bouillon ◽  
François Darchambeau ◽  
...  

2005 ◽  
Vol 2 (1) ◽  
pp. 75-86 ◽  
Author(s):  
W. X. Schulze

Abstract. Mass spectrometry based analysis of proteins is widely used to study cellular processes in model organisms. However, it has not yet routinely been applied in environmental research. Based on observations that protein can readily be detected as a component of dissolved organic matter (DOM), this article gives an example about the possible use of protein analysis in ecology and environmental sciences focusing on different terrestrial ecosystems. At this stage, there are two areas of interest: (1) the identification of phylogenetic groups contributing to the environmental protein pool, and (2) identification of the organismic origin of specific enzymes that are important for ecosystem processes. In this paper, mass spectrometric protein analysis was applied to identify proteins from decomposing plant material and DOM of soil leachates and surface water samples derived from different environments. It is concluded, that mass spectrometric protein analysis is capable of distinguishing phylogenetic origin of proteins from litter protein extracts, leachates of different soil horizons, and from various sources of terrestrial surface water. Current limitation is imposed by the limited knowledge of complete genomes of soil organisms. The protein analysis allows to relate protein presence to biogeochemical processes, and to identify the source organisms for specific active enzymes. Further applications, such as in pollution research are conceivable. In summary, the analysis of proteins opens a new area of research between the fields of microbiology and biogeochemistry.


2021 ◽  
Author(s):  
Niek Jesse Speetjens ◽  
George Tanski ◽  
Victoria Martin ◽  
Julia Wagner ◽  
Andreas Richter ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document